Skip to main content

Riassunto

In questi primi dieci anni della nostra attività di ricerca ci siamo imbattuti in varie definizioni relative al significato del suddetto termine, che tuttavia ne descrivono solo la soggettività storica o gli interessi commerciali. È ormai consuetudine comune distinguere la ricerca di base da quella applicata, la prima che produce mera conoscenza, la seconda che produce, invece, tecnologia, innovazione e ricchezza. Riportiamo di seguito alcune delle definizioni di ricerca.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliografia

  1. Becker LB, Weisfeldt ML, Weil MH et al (2002) Scientific priorities and strategic planning for resuscitation research and life saving therapies. Circulation 105:2562–2570

    Article  PubMed  Google Scholar 

  2. Lauer MS (2012) Advancing cardiovascular research. Chest 141:500–505

    Article  PubMed  Google Scholar 

  3. Idris AH, Becker LB, Ornato JP et al (1996) Utstein-style guidelines for uniform reporting of laboratory CPR research. A statement for healthcare professionals from a Task Force of the American Heart Association, the American College of Emergency Physicians, the American College of Cardiology, the European Resuscitation Council, the Heart and Stroke Foundation of Canada, the Institute of Critical Care Medicine, the Safar Center for Resuscitation Research, and the Society for Academic Emergency Medicine. Resuscitation 33:69–84

    Article  PubMed  CAS  Google Scholar 

  4. International Liaison Committee on Resuscitation: Part 2 (2005) Adult basic life support. Resuscitation 67:187–201

    Article  Google Scholar 

  5. Neumar RW, Nolan JP, Adrie C et al (2008) Post-cardiac arrest syndrome: epidemiology, pathophysiology, treatment, and prognostication. A consensus statement from the International Liaison Committee on Resuscitation. Circulation 118:2452–2483

    Article  PubMed  Google Scholar 

  6. Schiff M (1882) Über direkte reizung der herzoberflaeche. Arch Ges Physiol 28:200

    Article  Google Scholar 

  7. Boehm R (1878) Über wiederbelebung nach vergiftungen und asphyxia. Arch Exp Pathol Pharm 8:68

    Article  Google Scholar 

  8. Koenig F (1883) Lehrbuch der allgemeinen chirurgie. Goettingen

    Google Scholar 

  9. Eisenberg MS, Baskett P, Chamberlain D (2007) A history of cardiopulmonary resuscitation. In: Paradis NA, Halperin HR, Kern KB et al (eds) Cardiac arrest. The science and practice of resuscitation medicine. 2nd edn. Cambridge University Press, Cambridge, pp 2–25

    Google Scholar 

  10. Nakagawa Y, Weil MH, Tang W (1999) The history of CPR. In: Weil MH, Tang W (eds) CPR. Resuscitation of the arrested heart. WB Saunders, Philadelphia, pp 1–12

    Google Scholar 

  11. Kouwenhoven WB, Jude JR, Knickerbocker GG (1960) Closed-chest cardiac massage. JAMA 173:1064–1067

    Article  PubMed  CAS  Google Scholar 

  12. Prevost JL, Battelli F (1899) La mort par les courants electriques-courants alternatifs a haute tension. J Physiol Pathol Gen 1:427–442

    Google Scholar 

  13. Deakin CD, Nolan JP (2005) European Resuscitation Council guidelines for resuscitation 2005. Section 3. Electrical therapies: automated external defibrillators, defibrillation, cardioversion and pacing. Resuscitation 67(Suppl 1):S25–37

    Article  PubMed  Google Scholar 

  14. Pellis T, Weil MH, Tang W et al (2003) Evidence favoring the use of an α2-elective vasopressor agent for cardiopulmonary resuscitation. Circulation 108:2716–2721

    Article  PubMed  CAS  Google Scholar 

  15. Cammarata G, Weil MH, Sun S et al (2004) Beta1-adrenergic blockade during cardiopulmonary resuscitation improves survival. Crit Care Med 32(9 Suppl):S440–443

    Article  PubMed  CAS  Google Scholar 

  16. Huang L, Weil MH, Cammarata G et al (2004) Nonselective beta-blocking agent improves the outcome of cardiopulmonary resuscitation in a rat model. Crit Care Med 32(9 Suppl):S378–380

    Article  PubMed  CAS  Google Scholar 

  17. Klouche K, Weil MH, Sun S et al (2003) A comparison of alpha-methylnorepinephrine, vasopressin and epinephrine for cardiac resuscitation. Resuscitation 57:93–100

    Article  PubMed  CAS  Google Scholar 

  18. Ristagno G, Tang W, Huang L et al (2009) Epinephrine reduces cerebral perfusion during cardiopulmonary resuscitation. Crit Care Med 37:1408–1415

    Article  PubMed  CAS  Google Scholar 

  19. Olasveengen TM, Wik L, Sunde K et al (2012) Outcome when adrenaline (epinephrine) was actually given vs. not given — post hoc analysis of a randomized clinical trial. Resuscitation 83:327–332

    Article  PubMed  Google Scholar 

  20. Olasveengen TM, Sunde K, Brunborg C et al (2009) Intravenous drug administration during out-of-hospital cardiac arrest: a randomized trial. JAMA 302:2222–2229

    Article  PubMed  Google Scholar 

  21. Hagihara A, Hasegawa M, Abe T et al (2012) Prehospital epinephrine use and survival among patients with out-of-hospital cardiac arrest. JAMA 307:1161–1168

    Article  PubMed  CAS  Google Scholar 

  22. Sayre MR, Koster RW, Botha M et al (2010) Part 5: Adult basic life support: 2010 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. Circulation 122(16 Suppl 2):S298–324

    Article  PubMed  Google Scholar 

  23. Deshmukh HG, Weil MH, Gudipati CV et al (1989) Mechanism of blood flow generated by precordial compression during CPR. I. Studies on closed chest precordial compression. Chest 95:1092–1099

    Article  PubMed  CAS  Google Scholar 

  24. Sanders AB, Kern KB, Ewy GA (1985) Time limitations for open-chest cardiopulmonary resuscitation from cardiac arrest. Crit Care Med 13:897–898

    Article  PubMed  CAS  Google Scholar 

  25. Sanders AB, Ogle M, Ewy GA (1985) Coronary perfusion pressure during cardiopulmonary resuscitation. Am J Emerg Med 3:11–14

    Article  PubMed  CAS  Google Scholar 

  26. Falk JL, Rackow EC, Weil MH (1988) End-tidal carbon dioxide concentration during cardiopulmonary resuscitation. N Engl J Med 318:607–611

    Article  PubMed  CAS  Google Scholar 

  27. Weil MH, Bisera J, Trevino RP et al (1985) Cardiac output and end-tidal carbon dioxide. Crit Care Med 13:907–909

    Article  PubMed  CAS  Google Scholar 

  28. Ristagno G, Tang W, Chang YT et al (2007) The quality of chest compressions during cardiopulmonary resuscitation overrides importance of timing of defibrillation. Chest 132: 70–75

    Article  PubMed  Google Scholar 

  29. Gazmuri RJ, Weil MH, Bisera J et al (1996) Myocardial dysfunction after successful resuscitation from cardiac arrest. Crit Care Med 24:992–1000

    Article  PubMed  CAS  Google Scholar 

  30. Kette F, Weil MH, Gazmuri RJ (1991) Buffer solutions may compromise cardiac resuscitation by reducing coronary perfusion pressure. JAMA 266:2121–2126

    Article  PubMed  CAS  Google Scholar 

  31. Tang W, Weil MH, Sun S et al (1993) Progressive myocardial dysfunction after cardiac resuscitation. Crit Care Med 21:1046–1050

    Article  PubMed  CAS  Google Scholar 

  32. Tang W, Weil MH, Sun S et al (1999) The effects of biphasic and conventional monophasic defibrillation on postresuscitation myocardial function. J Am Coll Cardiol 34:815–822

    Article  PubMed  CAS  Google Scholar 

  33. Niemann JT, Criley JM, Rosborough JP et al (1985) Predictive indices of successful cardiac resuscitation after prolonged arrest and experimental cardiopulmonary resuscitation. Ann Emerg Med 14:521–528

    Article  PubMed  CAS  Google Scholar 

  34. Paradis NA, Martin G (1990) The role of ETCO2 in assessing hemodynamics during CPR. Ann Emerg Med 19:1201–1202

    Article  PubMed  CAS  Google Scholar 

  35. Povoas HP, Bisera J (2000) Electrocardiographic waveform analysis for predicting the success of defibrillation. Crit Care Med 28(11 Suppl):N210–211

    Article  PubMed  CAS  Google Scholar 

  36. Edelson DP, Abella BS, Kramer-Johansen J et al (2006) Effects of compression depth and preshock pauses predict defibrillation failure during cardiac arrest. Resuscitation 71:137–145

    Article  PubMed  Google Scholar 

  37. Eckstein M, Hatch L, Malleck J et al (2011) End-tidal CO2 as a predictor of survival in out-of-hospital cardiac arrest. Prehosp Disaster Med 26:148–150

    Article  PubMed  Google Scholar 

  38. Klemenc-Ketis Z, Kersnik J, Grmec S (2010) The effect of carbon dioxide on near-death experiences in out-of-hospital cardiac arrest survivors: a prospective observational study. Crit Care 14:R56

    Article  PubMed  Google Scholar 

  39. Kern KB, Hilwig RW, Berg RA et al (2002) Importance of continuous chest compressions during cardiopulmonary resuscitation. Improved outcome during a simulated single lay-rescuer scenario. Circulation 105:645–649

    Article  PubMed  Google Scholar 

  40. Berg RA, Sanders AB, Kern KB et al (2001) Adverse hemodynamic effects of interrupting chest compressions for rescue breathing during cardiopulmonary resuscitation for ventricular fibrillation cardiac arrest. Circulation 104:2465–2470

    Article  PubMed  CAS  Google Scholar 

  41. Osswald S, Trouton TG, O’Nunain SS et al (1994) Relation between shock-related myocardial injury and defibrillation efficacy of monophasic and biphasic shocks in a canine model. Circulation 90:2501–2509

    Article  PubMed  CAS  Google Scholar 

  42. Xie J, Weil MH, Sun S et al (1997) High-energy defibrillation increases the severity of postresuscitation myocardial dysfunction. Circulation 96:683–688

    Article  PubMed  CAS  Google Scholar 

  43. Safar P, Xiao F, Radovsky A et al (1996) Improved cerebral resuscitation from cardiac arrest in dogs with mild hypothermia plus blood flow promotion. Stroke 27:105–113

    Article  PubMed  CAS  Google Scholar 

  44. The Hypothermia After Cardiac Arrest Study Group (2002) Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med 346:549–556

    Article  Google Scholar 

  45. Bernard SA, Gray TW, Buist MD et al (2002) Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med 346:557–563

    Article  PubMed  Google Scholar 

  46. Peberdy MA, Callaway CW, Neumar RW et al (2010) Part 9: post-cardiac arrest care: 2010 American Heart Association Guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation 122(18 Suppl 3):S768–786

    Article  PubMed  Google Scholar 

  47. Marn-Pernat A, Weil MH, Tang W et al (2001) Optimizing timing of ventricular defibrillation. Crit Care Med 29:2360–2365

    Article  PubMed  CAS  Google Scholar 

  48. Povoas HP, Weil MH, Tang W et al (2002) Predicting the success of defibrillation by electrocardiographic analysis. Resuscitation 53:77–82

    Article  PubMed  Google Scholar 

  49. Young C, Bisera J, Gehman S et al (2004) Amplitude spectrum area: measuring the probability of successful defibrillation as applied to human data. Crit Care Med 32(9 Suppl):S356–358

    Article  PubMed  Google Scholar 

  50. Ristagno G, Gullo A, Berlot G et al (2008) Prediction of successful defibrillation in human victims of out-of-hospital cardiac arrest: a retrospective electrocardiographic analysis. Anaesth Intensive Care 36:46–50

    PubMed  CAS  Google Scholar 

  51. Tsai MS, Barbut D, Tang W et al (2008) Rapid head cooling initiated coincident with cardiopulmonary resuscitation improves success of defibrillation and post-resuscitation myocardial function in a porcine model of prolonged cardiac arrest. J Am Coll Cardiol 5241:1988–1990

    Article  Google Scholar 

  52. Tsai MS, Barbut D, Wang H et al (2008) Intra-arrest rapid head cooling improves postresuscitation myocardial function in comparison with delayed postresuscitation surface cooling. Crit Care Med 36:S434–439

    Article  PubMed  Google Scholar 

  53. Guan J, Barbut D, Wang H et al (2008) A comparison between head cooling begun during cardiopulmonary resuscitation and surface cooling after resuscitation in a pig model of cardiac arrest. Crit Care Med 36:S428–4233

    Article  PubMed  Google Scholar 

  54. Yu T, Barbut D, Ristagno G et al (2010) Survival and neurological outcomes after nasopharyngeal cooling or peripheral vein cold saline infusion initiated during cardiopulmonary resuscitation in a porcine model of prolonged cardiac arrest. Crit Care Med 38:916–921

    Article  PubMed  Google Scholar 

  55. Frank SM, Cattaneo CG, Wieneke-Brady MB et al (2002) Threshold for adrenomedullary activation and increased cardiac work during mild core hypothermia. Clin Sci (Lond) 102:119–125

    Article  CAS  Google Scholar 

  56. Castrén M, Nordberg P, Svensson L et al (2010) Intra-arrest transnasal evaporative cooling: a randomized, prehospital, multicenter study (PRINCE: Pre-ROSC IntraNasal Cooling Effectiveness). Circulation 122:729–736

    Article  PubMed  Google Scholar 

  57. Ristagno G, Tang W, Weil MH (2006) Tissue partial pressure of carbon dioxide tension. Measurements and microcirculation visualization. New techniques for study low flow states. In: Gullo A (ed) Anaesthesia, Pain, Intensive Care and Emergency Medicine A.P.I.C.E. Proceedings of the 21th Postgraduate Course in Critical Medicine. Venice-Mestre, Italy, November 10–13, 2006. Springer-Verlag, New York, pp 203–214

    Google Scholar 

  58. Sato Y, Weil MH, Tang W et al (1997) Esophageal PCO2 as a monitor of perfusion failure during hemorrhagic shock. J Appl Physiol 82:558–562

    PubMed  CAS  Google Scholar 

  59. Nakagawa Y, Weil MH, Tang W et al (1998) Sublingual capnometry for diagnosis and quantitation of circulatory shock. Am J Respir Crit Care Med 157:1838–1843

    PubMed  CAS  Google Scholar 

  60. Desai VS, Weil MH, Tang W et al (1995) Hepatic, renal, and cerebral tissue hypercarbia during sepsis and shock in rats. J Lab Clin Med 125:456–461

    PubMed  CAS  Google Scholar 

  61. Kette F, Weil MH, Gazmuri RJ et al (1993) Intramyocardial hypercarbic acidosis during cardiac arrest and resuscitation. Crit Care Med 21:901–906

    Article  PubMed  CAS  Google Scholar 

  62. Tang W, Weil MH, Sun S et al (1994) Gastric intramural PCO2 as monitor of perfusion failure during hemorrhagic and anaphylactic shock. J Appl Physiol 76:572–577

    PubMed  CAS  Google Scholar 

  63. Gutierrez G, Palizas F, Doglio G et al (1992) Gastric intramucosal pH as a therapeutic index of tissue oxygenation in critically ill patients. Lancet 339:195–199

    Article  PubMed  CAS  Google Scholar 

  64. Povoas HP, Weil MH, Tang W et al (2001) Decreases in mesenteric blood flow associated with increases in sublingual PCO2 during hemorrhagic shock. Shock 15:398–402

    Article  PubMed  CAS  Google Scholar 

  65. Pellis T, Weil MH, Tang W et al (2005) Increases in both buccal and sublingual PCO2 reflect decreases in tissue blood flows in a porcine model during hemorrhagic shock. J Trauma 58:817–824

    Article  PubMed  Google Scholar 

  66. Cammarata G, Weil MH, Fries M et al (2006) Buccal capnometry to guide management of massive blood loss. J Appl Physiol 100:304–306

    Article  PubMed  Google Scholar 

  67. Fries M, Weil MH, Sun S et al (2006) Increases in tissue PCO2 during circulatory shock reflect selective decreases in capillary blood flow. Crit Care Med 34:446–452

    Article  PubMed  CAS  Google Scholar 

  68. Fang X, Tang W, Sun S et al (2006) Comparison of buccal microcirculation between septic and hemorrhagic shock. Crit Care Med 34:S447–453

    Article  PubMed  Google Scholar 

  69. Weil MH (2000) Tissue PCO2 as universal marker of tissue hypoxia. Minerva Anestesiol 66:343–347

    PubMed  CAS  Google Scholar 

  70. Shiessler C, Schaudig S, Harris AG et al (2002) Orthogonal polarization spectral imaging — a new clinical method for monitoring of microcirculation. Anaesthetist 51:576–579

    Article  Google Scholar 

  71. De Backer D, Creteur J, Preiser JC et al (2002) Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med 166:98–104

    Article  PubMed  Google Scholar 

  72. Vajda K, Szabo A, Boros M (2004) Heterogeneous microcirculation in the rat small intestine during hemorrhagic shock: quantification of the effects of hypertonic-hyperoncotic resuscitation. Eur Surg Res 36:338–344

    Article  PubMed  CAS  Google Scholar 

  73. Spronk PE, Ince C, Gardien MJ et al (2002) Nitroglycerin in septic shock after intravascular volume resuscitation. Lancet 360:1395–1396

    Article  PubMed  Google Scholar 

  74. De Backer D, Creteur J, Dubois MJ et al (2004) Microvascular alterations in patients with acute severe heart failure and cardiogenic shock. Am Heart J 147:91–99

    Article  PubMed  Google Scholar 

  75. Fries M, Tang W, Chang YT et al (2006) Microvascular blood flow during cardiopulmonary resuscitation is predictive of outcome. Resuscitation 71:248–253

    Article  PubMed  Google Scholar 

  76. Ristagno G, Tang W, Huang L et al (2009) Epinephrine reduces cerebral perfusion during cardiopulmonary resuscitation. Crit Care Med 37:1408–1415

    Article  PubMed  CAS  Google Scholar 

  77. Ristagno G, Tang W, Sun S et al (2008) Cerebral cortical microvascular flow during and following cardiopulmonary resuscitation after short duration of cardiac arrest. Resuscitation 77:229–234

    Article  PubMed  Google Scholar 

  78. Dellinger RP, Levy MM, Carlet JM et al (2008) Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Crit Care Med 36:296–327

    Article  PubMed  Google Scholar 

  79. ECC Committee, Subcommittees and Task Forces of the American Heart Association (2005) 2005 American Heart Association Guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation 112(24 Suppl):IV1–203

    Google Scholar 

  80. Weil MH, Tang W (2007) Welcoming a new era of hemodynamic monitoring: expanding from the macro to the microcirculation. Crit Care Med 35:1204–1205

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Italia

About this chapter

Cite this chapter

Ristagno, G., Li Volti, G. (2012). Ricerca di base e medicina critica. In: Gullo, A., Murabito, P. (eds) Governo clinico e medicina perioperatoria. Springer, Milano. https://doi.org/10.1007/978-88-470-2793-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2793-0_22

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-2792-3

  • Online ISBN: 978-88-470-2793-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics