Skip to main content

Methodological Aspects of Lymphoscintigraphy: Radiopharmaceuticals and Instrumentation

  • Chapter
Atlas of Lymphoscintigraphy and Sentinel Node Mapping

Abstract

Deposition of radioactive colloids in regional lymph nodes was first observed by Walker after subcutaneous injection of colloidal gold-198 (198Au) [1]. Since a significant fraction of the activity remained at the injection site after subcutaneous administration of colloidal 198Au (a radionuclide with a significant component of beta decay), the radiation burden at the injection site limited the activity that could be safely administered. This led to a search for agents with more favorable physical characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Walker LA (1950) Localization of radioactive colloids in lymph nodes. J Lab Clin Med 36:440–449.

    PubMed  CAS  Google Scholar 

  2. Sherman AI, Ter-Pogossian M (1953) Lymph-node concentration of radioactive colloidal gold following interstitial injection. Cancer 6:1238–1240.

    Article  PubMed  CAS  Google Scholar 

  3. Segal AW, Gregoriadis G, Black CD (1975) Liposomes as vehicles for the local release of drugs. Clin Sci Mol Med 49:99–106.

    PubMed  CAS  Google Scholar 

  4. Ikeda I, Inoue O, Kurata K (1976) New preparation method for 99mTc-phytate. J Nucl Med 17:389–393.

    PubMed  CAS  Google Scholar 

  5. Strand SE, Persson BR (1979) Quantitative lymphoscintigraphy I: Basic concepts for optimal uptake of radiocolloids in the parasternal lymph nodes of rabbits. J Nucl Med 20:1038–1046.

    PubMed  CAS  Google Scholar 

  6. Bergqvist L, Strand SE, Persson BR (1983) Particle sizing and biokinetics of interstitial lymphoscintigraphic agents. Semin Nucl Med 13:9–19.

    Article  PubMed  CAS  Google Scholar 

  7. Turner JH (1983) Post-traumatic avascular necrosis of the femoral head predicted by preoperative technetium-99m antimony-colloid scan. An experimental and clinical study. J Bone Joint Surg Am 65:786–796.

    PubMed  CAS  Google Scholar 

  8. Patel HM, Boodle KM, Vaughan-Jones R (1984) Assessment of the potential uses of liposomes for lymphoscintigraphy and lymphatic drug delivery. Failure of 99m-technetium marker to represent intact liposomes in lymph nodes. Biochim Biophys Acta 801:76–86.

    Article  PubMed  CAS  Google Scholar 

  9. Patel HM, Russell NJ (1988) Liposomes: from membrane model to therapeutic applications. Biochem Soc Trans 6:909–910.

    Google Scholar 

  10. Strand SE, Bergqvist L (1989) Radiolabeled colloids and macromolecules in the lymphatic system. Crit Rev Ther Drug Carrier Syst 6:211–238.

    PubMed  CAS  Google Scholar 

  11. Allen TM, Hansen CB, Guo LS (1993) Subcutaneous administration of liposomes: a comparison with the intravenous and intraperitoneal routes of injection. Biochim Biophys Acta 25:9–16.

    Google Scholar 

  12. Moghimi SM, Davis SS (1994) Innovations in avoiding particle clearance from blood by Kupffer cells: cause for reflection. Crit Rev Ther Drug Carrier Syst 11:31–59.

    PubMed  CAS  Google Scholar 

  13. Ikomi F, Hanna GK, Schmid-Schönbein GW (1995) Mechanism of colloidal particle uptake into the lymphatic system: basic study with percutaneous lymphography. Radiology 196:107–113.

    PubMed  CAS  Google Scholar 

  14. Moghimi SM, Rajabi-Siahboomi R (1996) Advanced colloid-based systems for efficient delivery of drugs and diagnostic agents to the lymphatic tissues. Prog Biophys Mol Biol 65:221–249.

    Article  PubMed  CAS  Google Scholar 

  15. Pecking A, Firmin F, Rain JD et al (1980) [Lymphoedema of the upper limb following surgery or radiotherapy. Investigation by indirect radioactive lymphography.] Nouv Presse Med 9:3349–3351.

    PubMed  CAS  Google Scholar 

  16. Bräutigam P, Vanscheidt W, Földi E et al (1993) The importance of the subfascial lymphatics in the diagnosis of lower limb edema: investigations with semiquantitative lymphoscintigraphy. Angiology 44:464–470.

    Article  PubMed  Google Scholar 

  17. Mostbeck A, Partsch H (1999) Isotope lymphography — possibilities and limits in evaluation of lymph transport. Wien Med Wochenschr 149:87–91.

    PubMed  CAS  Google Scholar 

  18. Partsch H (2003) Practical aspects of indirect lymphography and lymphoscintigraphy. Lymphat Res Biol 1:71–74.

    Article  PubMed  Google Scholar 

  19. Henze E, Schelbert HR, Collins JD et al (1982) Lymphoscintigraphy with Tc-99m-labeled dextran. J Nucl Med 23:923–929.

    PubMed  CAS  Google Scholar 

  20. Kazem I, Antoniades J, Brady LW et al (1968) Clinical evaluation of lymph node scanning utilizing colloidal gold 198. Radiology 90:905–911.

    PubMed  CAS  Google Scholar 

  21. Nagai K, Ito Y, Otsuka N et al (1980) [Clinical usefullness on accumulation of 99mTc-rhenium colloid in lymph nodes.] Radioisotopes 29:549–551.

    Article  PubMed  CAS  Google Scholar 

  22. Nagai K, Ito Y, Otsuka N, Muranaka A (1982) Deposition of small 99mTc-labelled colloids in bone marrow and lymph nodes. Eur J Nucl Med 7:66–70.

    Article  PubMed  CAS  Google Scholar 

  23. Warbick A, Ege GN, Henkelman RM, et al (1977) An evaluation of radiocolloid sizing techniques. J Nucl Med 18:827–834.

    PubMed  CAS  Google Scholar 

  24. Davis MA, Jones AG, Trindade H (1974) A rapid and accurate method for sizing radiocolloids. J Nucl Med 15:923–928.

    PubMed  CAS  Google Scholar 

  25. Hung JC, Wiseman GA, Wahner HW et al (1995) Filtered technetium-99m-sulfur colloid evaluated for lymphoscintigraphy. J Nucl Med 36:1895–1901.

    PubMed  CAS  Google Scholar 

  26. Kleinhans E, Baumeister RG, Hahn D et al (1985) Evaluation of transport kinetics in lymphoscintigraphy: follow-up study in patients with transplanted lymphatic vessels. Eur J Nucl Med 10:349–352.

    Article  PubMed  CAS  Google Scholar 

  27. Gommans GM, Gommans E, van der Zant FM et al (2009) 99mTc Nanocoll: a radiopharmaceutical for sentinel node localisation in breast cancer-in vitro and in vivo results. Appl Radiat Isot 67:1550–1558.

    Article  PubMed  CAS  Google Scholar 

  28. Tsopelas C (2001) Particle size analysis of 99mTc-labeled and unlabeled antimony trisulfide and rhenium sulfide colloids intended for lymphoscintigraphic application. J Nucl Med 42:460–466.

    PubMed  CAS  Google Scholar 

  29. Swartz MA (2001) The physiology of the lymphatic system. Adv Drug Deliv Rev 50:3–20.

    Article  PubMed  CAS  Google Scholar 

  30. Atkins HL, Hauser W, Richards P (1970) Visualization of mediastinal lymph nodes after intraperitoneal administration of 99m Tcsulfur colloid. Nucl Med (Stuttg) 9:275–278.

    CAS  Google Scholar 

  31. Frier M, Griffiths P, Ramsey A (1981) The physical and chemical characteristics of sulphur colloids. Eur J Nucl Med 6:255–260.

    PubMed  CAS  Google Scholar 

  32. Ikomi F, Hanna GK, Schmid-Schönbein GW (1999) Size-and surface-dependent uptake of colloid particles into the lymphatic system. Lymphology 32:90–102.

    PubMed  CAS  Google Scholar 

  33. Aukland K, Reed RK (1993) Interstitial-lymphatic mechanisms in the control of extracellular fluid volume. Physiol Rev 73:1–78.

    PubMed  CAS  Google Scholar 

  34. Swartz MA, Fleury ME (2007) Interstitial flow and its effects in soft tissues. Annu Rev Biomed Eng 9:229–256.

    Article  PubMed  CAS  Google Scholar 

  35. Mariani G, Moresco L, Viale G et al (2001) Radioguided sentinel lymph node biopsy in breast cancer surgery. J Nucl Med 42:1198–1215.

    PubMed  CAS  Google Scholar 

  36. Weiss M, Gildehaus FJ, Brinkbäumer K et al (2005) [Lymph kinetics with technetium-99m labeled radiopharmaceuticals. Animal studies.] Nuklearmedizin 44:156–165.

    PubMed  CAS  Google Scholar 

  37. Reddy ST, Berk DA, Jain RK et al (2006) A sensitive in vivo model for quantifying interstitial convective transport of injected macromolecules and nanoparticles. J Appl Physiol 101:1162–1169.

    Article  PubMed  CAS  Google Scholar 

  38. Mangat S, Patel HM (1985) Lymph node localization of non-specific antibody-coated liposomes. Life Sci 36:1917–1925.

    Article  PubMed  CAS  Google Scholar 

  39. Szuba A, Shin WS, Strauss HW et al (2003) The third circulation: radionuclide lymphoscintigraphy in the evaluation of lymphedema. J Nucl Med 44:43–57.

    PubMed  Google Scholar 

  40. Paganelli G, De Cicco C, Cremonesi M et al (1998) Optimized sentinel node scintigraphy in breast cancer. Q J Nucl Med 42:49–53.

    PubMed  CAS  Google Scholar 

  41. De Cicco C, Cremonesi M, Luini A et al (1998) Lymphoscintigraphy and radioguided biopsy of the sentinel axillary node in breast cancer. J Nucl Med 39:2080–2084.

    PubMed  Google Scholar 

  42. Wilhelm AJ, Mijnhout GS, Franssen EJ (1999) Radiopharmaceuticals in sentinel lymph-node detection — an overview. Eur J Nucl Med 26:S36–42.

    PubMed  CAS  Google Scholar 

  43. Noguchi M (2002) Sentinel lymph node biopsy and breast cancer. BrJSurg 89:21–34.

    CAS  Google Scholar 

  44. Trifirò G, Viale G, Gentilini O et al (2004) Sentinel node detection in pre-operative axillary staging. Eur J Nucl Med Mol Imaging 31:S46–55.

    Article  PubMed  Google Scholar 

  45. Leidenius MH, Leppanen EA, Krogerus LA et al (2004) The impact of radiopharmaceutical particle size on the visualization and identification of sentinel nodes in breast cancer. Nucl Med Commun 25:233–238.

    Article  PubMed  Google Scholar 

  46. Nieweg OE, Jansen L, Valdes Olmos RA et al (1999) Lymphatic mapping and sentinel lymph node biopsy in breast cancer. Eur J Nucl Med 26:S11–16.

    Article  PubMed  CAS  Google Scholar 

  47. Chinol M, Paganelli G (1999) Current status of commercial colloidal preparations for sentinel lymph node detection. Eur J Nucl Med 26:560

    PubMed  CAS  Google Scholar 

  48. Bourgeois P (2007) Scintigraphic investigations of the lymphatic system: the influence of injected volume and quantity of labeled colloidal tracer. J Nucl Med 48:693–695.

    Article  PubMed  Google Scholar 

  49. Valdés-Olmos RA, Jansen L, Hoefnagel CA et al (2000) Evaluation of mammary lymphoscintigraphy by a single intratumoral injection for sentinel node identification. J Nucl Med 41:1500–1506.

    PubMed  Google Scholar 

  50. Werner JA, Dünne AA, Ramaswamy A et al (2002) Number and location of radiolabeled, intraoperatively identified sentinel nodes in 48. head and neck cancer patients with clinically staged N0. and N1. neck. Eur Arch Otorhinolaryngol 259:91–96.

    Article  PubMed  CAS  Google Scholar 

  51. Ikomi F, Hunt J, Hanna G et al (1996) Interstitial fluid, plasma protein, colloid, and leukocyte uptake into initial lymphatics. J Appl Physiol 81:2060–2067.

    PubMed  CAS  Google Scholar 

  52. O’Morchoe CC, Jones WR 3rd, Jarosz HM et al (1984) Temperature dependence of protein transport across lymphatic endothelium in vitro. J Cell Biol 98:629–40.

    Article  CAS  Google Scholar 

  53. Lund T, Wiig H, Reed RK, Aukland K (1987) A ‘new’ mechanism for oedema generation: strongly negative interstitial fluid pressure causes rapid fluid flow into thermally injured skin. Acta Physiol Scand 129:433–435.

    PubMed  CAS  Google Scholar 

  54. Engeset A, Sokolowski J, Olszewski WL (1977) Variation in output of leukocytes and erythrocytes in human peripheral lymph during rest and activity. Lymphology 10:198–203.

    PubMed  CAS  Google Scholar 

  55. Olszewski W, Engeset A, Jaeger PM et al (1977) Flow and composition of leg lymph in normal men during venous stasis, muscular activity and local hyperthermia. Acta Physiol Scand 99:149–155.

    Article  PubMed  CAS  Google Scholar 

  56. Mathelin C, Piqueras I, Guyonnet JL (2006) [Development of technologies for sentinel lymph node biopsy in case of breast cancer.] Gynecol Obstet Fertil 34:521–525.

    Article  PubMed  CAS  Google Scholar 

  57. Povoski SP, Neff RL, Mojzisik CM et al (2009) A comprehensive overview of radioguided surgery using gamma detection probe technology. World J Surg Oncol 7:11.

    Article  PubMed  Google Scholar 

  58. Woolfenden JM, Barber HB (1989) Radiation detector probes for tumor localization using tumor-seeking radioactive tracers. AJR Am J Roentgenol 153:35–39.

    Article  PubMed  CAS  Google Scholar 

  59. Barber HB, Barrett HH, Hickernell TS et al (1991) Comparison of NaI(Tl), CdTe, and HgI2. surgical probes: physical characterization. Med Phys 8:373–381.

    Article  Google Scholar 

  60. Kwo DP, Barber HB, Barrett HH et al (1991) Comparison of NaI(T1), CdTe, and HgI2. surgical probes: effect of scatter compensation on probe performance. Med Phys 8:382–389.

    Article  Google Scholar 

  61. Thurston MO (1994) Development of the gamma-detecting probe for radioimmunoguided surgery. In Martin EW (ed) Radioimmuno-guided surgery (RIGS) in the detection and treatment of colorectal cancer. R.G. Landes Company, Austin, Texas, pp 41–65.

    Google Scholar 

  62. Tiourina T, Arends B, Huysmans D et al (1998) Evaluation of surgical gamma probes for radio-guided sentinel node localisation. Eur J Nucl Med 25:1224–1231.

    Article  PubMed  CAS  Google Scholar 

  63. Schneebaum S, Even-Sapir E, Cohen M et al (1999) Clinical applications of gamma-detection probes-radio-guided surgery. Eur J Nucl Med 6:S26–S35.

    Google Scholar 

  64. Hoffman EJ, Tornai MP, Janecek M et al (1999) Intra-operative probes and imaging probes. Eur J Nucl Med 26:913–35.

    Article  PubMed  CAS  Google Scholar 

  65. Zanzonico P, Heller S (2000) The intra-operative gamma probe: basic principles and choices available. Semin Nucl Med 30:33–48.

    Article  PubMed  CAS  Google Scholar 

  66. Ricard M (2001) Intra-operative detection of radiolabeled compounds using a hand held gamma probe. Nucl Instrum Meth Phys Res A 458:26–33.

    Article  CAS  Google Scholar 

  67. Zanzonico P (2002) The intra-operative gamma probe: design, operation, and safety. In Cody HS (ed) Sentinel lymph node biopsy. Informa Health Care, London, pp 45–68.

    Google Scholar 

  68. Wengenmair H, Kopp J (2005) Gamma probes for sentinel lymph node localization: quality criteria, minimal requirements and quality of commercially available systems. http://www.sln-kompetenzzentrum.de/gammaprobes.pdf. Accessed 31. May 2012

  69. Mariani G, Vaiano A, Nibale O et al (2005) Is the “ideal” gammaprobe for intra-operative radio-guided surgery conceivable? J Nucl Med 46:388–390.

    PubMed  Google Scholar 

  70. Moffat FL Jr (2007) Targeting gold at the end of the rainbow: surgical gamma probes in the 21st century. J Surg Oncol 96:286–289.

    Article  PubMed  Google Scholar 

  71. Sarikaya I, Sarikaya A, Reba RC (2008) Gamma probes and their use in tumor detection in colorectal cancer. Int Semin Surg Oncol 5:25.

    Article  PubMed  Google Scholar 

  72. Navigator GPS Tyco healthcare. http://www.rmdmedical.com/navigator.html. Accessed 31. May 2012

  73. Seno Rx. Gamma Finder. http://www.senorx.com/products/SNDetection/GammaFinder.asp. Accessed 19. June 2012

  74. Bluetooth® Gamma Detection Probe, Neoprobe Corporation http://www.neoprobe.com/PDF/Model%201100%20and%201101%20. Bluetooth%20Manual_English.pdf. Accessed 31. May 2012

  75. Sentinellas-102. http://www.gem-imaging.com/. Accessed 31. May 2012

  76. AnzaieZ-scope. http://www.nuclemed.be. Accessed 31. May 2012

  77. Luma GEM. http://www.gm-ideas.com/. Accessed 31. May 2012

  78. Heckathorne E, Tiefer L, Daghighian F, Dahlbom M (2008) Evaluation of arrays of silicon photomultipliers for beta imaging. In: Nuclear Science Symposium Conference Record, 2008. NSS ‘08. IEEE,pp 1626–1631

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Anna Erba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Italia

About this chapter

Cite this chapter

Erba, P.A., Bisogni, G., Del Guerra, A., Mariani, G. (2013). Methodological Aspects of Lymphoscintigraphy: Radiopharmaceuticals and Instrumentation. In: Mariani, G., Manca, G., Orsini, F., Vidal-Sicart, S., Valdés Olmos, R.A. (eds) Atlas of Lymphoscintigraphy and Sentinel Node Mapping. Springer, Milano. https://doi.org/10.1007/978-88-470-2766-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2766-4_3

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-2765-7

  • Online ISBN: 978-88-470-2766-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics