Skip to main content

CT Angiography of Coronary Stents

  • Chapter
Imaging Coronary Arteries

Abstract

Coronary heart disease is a challenging socio-epidemiological problem in developed countries. In the United States, for example, the total prevalence of coronary heart disease in adults is 7.0%, with an annual incidence of myocardial infarction of 610,000 new attacks and 325,000 recurrent attacks. In 2007, mortality due to coronary heart disease was 406,351, with an estimated direct and indirect cost of $177.5 billion to the American healthcare system [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roger VL, Go AS, Lloyd-Jones DM et al (2011) Heart disease and stroke statistics-2011 update: a report from the American Heart Association. Circulation 123(4):e18–e209

    PubMed  Google Scholar 

  2. Gruntzig AR, Senning A, Siegenthaler WE (1979) Nonoperative dilatation of coronaryartery stenosis: percutaneous transluminal coronary angioplasty. N Engl J Med 301(2):61–68

    PubMed  CAS  Google Scholar 

  3. Chan PS, Patel MR, Klein LW et al (2011) Appropriateness of percutaneous coronary intervention. JAMA 306(1):53–61

    PubMed  CAS  Google Scholar 

  4. Patel MR, Dehmer GJ, Hirshfeld JW et al (2009) ACCF/SCAI/STS/AATS/AHA/ASNC 2009 Appropriateness Criteria for Coronary Revascularization: a report by the American College of Cardiology Foundation Appropriateness Criteria Task Force, Society for Cardiovascular Angiography and Interventions, Society of Thoracic Surgeons, American Association for Thoracic Surgery, American Heart Association, and the American Society of Nuclear Cardiology Endorsed by the American Society of Echocardiography, the Heart Failure Society of America, and the Society of Cardiovascular Computed Tomography. J Am Coll Cardiol 53(6):530–553

    PubMed  Google Scholar 

  5. Wijns W, Kolh P, Danchin N et al (2010) Guidelines on myocardial revascularization: The Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J 20:2501–2555

    Google Scholar 

  6. Sigwart U, Puel J, Mirkovitch V et al (1987) Intravascular stents to prevent occlusion and restenosis after transluminal angioplasty. N Engl J Med 316(12):701–706

    PubMed  CAS  Google Scholar 

  7. Fischman DL, Leon MB, Baim DS et al (1994) A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease. Stent Restenosis Study Investigators. N Engl J Med 331(8): 496–501

    CAS  Google Scholar 

  8. Moses JW, Leon MB, Popma JJ et al (2003) Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery. N Engl J Med 349(14):1315–1323

    PubMed  CAS  Google Scholar 

  9. Stone GW, Ellis SG, Cox DA et al (2004) A polymer-based, paclitaxel-eluting stent in patients with coronary artery disease. N Engl J Med 350(3):221–231

    PubMed  CAS  Google Scholar 

  10. Windecker S, Serruys PW, Wandel S et al (2008) Biolimus-eluting stent with biodegradable polymer versus sirolimus-eluting stent with durable polymer for coronary revascularisation (LEADERS): a randomised non-inferiority trial. Lancet 372(9644):1163–1173

    PubMed  CAS  Google Scholar 

  11. Lemos PA, Serruys PW, van Domburg RT et al (2004) Unrestricted utilization of sirolimuseluting stents compared with conventional bare stent implantation in the “real world”: the Rapamycin-Eluting Stent Evaluated At Rotterdam Cardiology Hospital (RESEARCH) registry. Circulation 109(2):190–195

    PubMed  CAS  Google Scholar 

  12. Maintz D, Seifarth H, Raupach R et al (2006) 64-slice multidetector coronary CT angiography: in vitro evaluation of 68 different stents. Eur Radiol 16(4):818–826

    PubMed  Google Scholar 

  13. 13*. US Food and Drug Administration CSDPMm, December 8, 2006, Washington, DC. Available at: http://www.fda.gov/ohrms/dockets/ac/06/ transcripts/2006-4253t2.rtf

    Google Scholar 

  14. Pump H, Mohlenkamp S, Sehnert CA et al (2000) Coronary arterial stent patency: assessment with electron-beam CT. Radiology 214(2):447–452

    PubMed  CAS  Google Scholar 

  15. Hamon M, Champ-Rigot L, Morello R, Riddell JW. Diagnostic accuracy of in-stent coronary restenosis detection with multislice spiral computed tomography: a meta-analysis. Eur Radiol 2008 Feb;18(2):217–225

    PubMed  Google Scholar 

  16. Spuentrup E, Ruebben A, Mahnken A et al (2005) Artifact-free coronary magnetic resonance angiography and coronary vessel wall imaging in the presence of a new, metallic, coronary magnetic resonance imaging stent. Circulation 111(8):1019–1026

    PubMed  Google Scholar 

  17. Gilbert G, Soulez G, Beaudoin G (2009) Improved in-stent lumen visualization using intravascular MRI and a balanced steady-state freeprecession sequence. Acad Radiol 16(12):1466–1474

    PubMed  Google Scholar 

  18. Erbel R, Haude M, Hopp HW et al (1998) Coronary-artery stenting compared with balloon angioplasty for restenosis after initial balloon angioplasty. Restenosis Stent Study Group. N Engl J Med 339(23):1672–1678

    CAS  Google Scholar 

  19. Savage MP, Douglas JS Jr., Fischman DL et al (1997) Stent placement compared with balloon angioplasty for obstructed coronary bypass grafts. Saphenous Vein De Novo Trial Investigators. N Engl J Med 337(11):740–747

    CAS  Google Scholar 

  20. Flohr T, Stierstorfer K, Raupach R et al (2004) Performance evaluation of a 64-slice CT system with z-flying focal spot. Rofo 176(12):1803–1810

    PubMed  CAS  Google Scholar 

  21. Rybicki FJ, Otero HJ, Steigner ML et al (2008) Initial evaluation of coronary images from 320-detector row computed tomography. Int J Cardiovasc Imaging 24(5):535–546

    PubMed  Google Scholar 

  22. Dewey M, Zimmermann E, Deissenrieder F et al (2009) Noninvasive coronary angiography by 320-row computed tomography with lower radiation exposure and maintained diagnostic accuracy: comparison of results with cardiac catheterization in a head-to-head pilot investigation. Circulation 120(10):867–875

    PubMed  Google Scholar 

  23. Flohr TG, McCollough CH, Bruder H et al (2006) First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol 16(2):256–268

    PubMed  Google Scholar 

  24. Johnson TR, Nikolaou K, Wintersperger BJ et al (2006) Dual-source CT cardiac imaging: initial experience. Eur Radiol 16(7):1409–1415

    PubMed  Google Scholar 

  25. Weustink AC, Neefjes LA, Kyrzopoulos S et al (2009) Impact of heart rate frequency and variability on radiation exposure, image quality, and diagnostic performance in dual-source spiral CT coronary angiography. Radiology 253(3):672–680

    PubMed  Google Scholar 

  26. Bastarrika G, Ramos-Duran L, Rosenblum MA et al (2010) Adenosine-stress dynamic myocardial CT perfusion imaging: initial clinical experience. Invest Radiol 45(6):306–313

    PubMed  CAS  Google Scholar 

  27. Weininger M, Schoepf UJ, Ramachandra A et al (2010) Adenosine-stress dynamic real-time myocardial perfusion CT and adenosine-stress first-pass dual-energy myocardial perfusion CT for the assessment of acute chest pain:Initial results. Eur J Radiol Dec 30 2010

    Google Scholar 

  28. Ruzsics B, Schwarz F, Schoepf UJ et al (2009) Comparison of dual-energy computed tomography of the heart with single photon emission computed tomography for assessment of coronary artery stenosis and of the myocardial blood supply. Am J Cardiol 1 104(3):318–326

    Google Scholar 

  29. Lell M, Marwan M, Schepis T et al (2009) Prospectively ECG-triggered high-pitch spiral acquisition for coronary CT angiography using dual source CT: technique and initial experience. Eur Radiol 19(11):2576–2583

    PubMed  Google Scholar 

  30. Leschka S, Stolzmann P, Desbiolles L et al (2009) Diagnostic accuracy of high-pitch dual-source CT for the assessment of coronary stenoses: first experience. Eur Radiol 19:2896–2903

    PubMed  Google Scholar 

  31. Donati OF, Burg MC, Desbiolles L et al (2010) High-pitch 128-slice dual-source CT for the assessment of coronary stents in a phantom model. Acad Radiol 17(11):1366–1374

    PubMed  Google Scholar 

  32. Wolf F, Leschka S, Loewe C et al (2010) Coronary artery stent imaging with 128-slice dualsource CT using high-pitch spiral acquisition in a cardiac phantom: comparison with the sequential and low-pitch spiral mode. Eur Radiol 20(9):2084–2091

    PubMed  Google Scholar 

  33. Scheffel H, Alkadhi H, Leschka S, et al (2008) Low-dose CT coronary angiography in the stepand-shoot mode: diagnostic performance. Heart 94(9):1132–1137

    PubMed  CAS  Google Scholar 

  34. Stolzmann P, Scheffel H, Schertler T et al (2008) Radiation dose estimates in dual-source computed tomography coronary angiography. Eur Radiol 18(3):592–599

    PubMed  Google Scholar 

  35. Husmann L, Valenta I, Gaemperli O et al (2008) Feasibility of low-dose coronary CT angiography: first experience with prospective ECGgating. Eur Heart J 29(2):191–197

    PubMed  Google Scholar 

  36. Bastarrika G, Broncano J, Arraiza M et al (2011) Systolic prospectively ECG-triggered dual-source CT angiography for evaluation of the coronary arteries in heart transplant recipients. Eur Radiol 21:1887–1894

    PubMed  Google Scholar 

  37. Earls JP, Berman EL, Urban BA et al (2008) Prospectively gated transverse coronary CT angiography versus retrospectively gated helical technique: improved image quality and reduced radiation dose. Radiology 246(3):742–753

    PubMed  Google Scholar 

  38. Yang WJ, Pan ZL, Zhang H et al (2011) Evaluation of coronary artery in-stent restenosis with prospectively ECG-triggered axial CT angiography versus retrospective technique: a phantom study. Radiol Med 116(2):189–196

    PubMed  Google Scholar 

  39. Suzuki S, Furui S, Kuwahara S et al (2009) Coronary artery stent evaluation using a vascular model at 64-detector row CT: comparison between prospective and retrospective ECG-gated axial scans. Korean J Radiol 10(3): 217–226

    PubMed  Google Scholar 

  40. Andreini D, Pontone G, Bartorelli AL et al (2011) High diagnostic accuracy of prospective ECG-gating 64-slice computed tomography coronary angiography for the detection of instent restenosis: in-stent restenosis assessment by low-dose MDCT. Eur Radiol 21(7):1430–1438

    PubMed  Google Scholar 

  41. Zhao L, Zhang Z, Fan Z et al (2011) Prospective versus retrospective ECG gating for dual source CT of the coronary stent: comparison of image quality, accuracy, and radiation dose. Eur J Radiol 77(3):436–442

    PubMed  Google Scholar 

  42. Horiguchi J, Fujioka C, Kiguchi M et al (2009) Prospective ECG-triggered axial CT at 140-kV tube voltage improves coronary in-stent restenosis visibility at a lower radiation dose compared with conventional retrospective ECG-gated helical CT. Eur Radiol 19(10):2363–2372

    PubMed  Google Scholar 

  43. Min JK, Swaminathan RV, Vass M et al (2009) High-definition multidetector computed tomography for evaluation of coronary artery stents: comparison to standard-definition 64-detector row computed tomography. J Cardiovasc Comput Tomogr 3(4):246–251

    PubMed  Google Scholar 

  44. Giesler T, Baum U, Ropers D et al (2002) Noninvasive visualization of coronary arteries using contrast-enhanced multidetector CT: influence of heart rate on image quality and stenosis detection. AJR Am J Roentgenol 179(4):911–916

    PubMed  Google Scholar 

  45. Decramer I, Vanhoenacker PK, Sarno G et al (2008) Effects of sublingual nitroglycerin on coronary lumen diameter and number of visualized septal branches on 64-MDCT angiography. AJR Am J Roentgenol 190(1):219–225

    PubMed  Google Scholar 

  46. Chun EJ, Lee W, Choi YH et al (2008) Effects of nitroglycerin on the diagnostic accuracy of electrocardiogram-gated coronary computed tomography angiography. J Comput Assist Tomogr 32(1):86–92

    PubMed  Google Scholar 

  47. Jakobs TF, Becker CR, Ohnesorge B et al (2002) Multislice helical CT of the heart with retrospective ECG gating: reduction of radiation exposure by ECG-controlled tube current modulation. Eur Radiol 12(5):1081–1086

    PubMed  Google Scholar 

  48. Bae KT (2010) Intravenous contrast medium administration and scan timing at CT: considerations and approaches. Radiology 256(1):32–61

    PubMed  Google Scholar 

  49. Kim DJ, Kim TH, Kim SJ et al (2008) Saline flush effect for enhancement of aorta and coronary arteries at multidetector CT coronary angiography. Radiology 246(1):110–115

    PubMed  Google Scholar 

  50. Kerl JM, Ravenel JG, Nguyen SA et al (2008) Right heart: split-bolus injection of diluted contrast medium for visualization at coronary CT angiography. Radiology 247(2):356–364

    PubMed  Google Scholar 

  51. Schoepf UJ, Zwerner PL, Savino G et al (2007) Coronary CT angiography. Radiology 244(1): 48–63

    PubMed  Google Scholar 

  52. Flohr TG, Schaller S, Stierstorfer K et al (2005) Multi-detector row CT systems and image-reconstruction techniques. Radiology 235(3):756–773

    PubMed  Google Scholar 

  53. Leschka S, Husmann L, Desbiolles LM et al (2006) Optimal image reconstruction intervals for non-invasive coronary angiography with 64-slice CT. Eur Radiol 16(9):1964–1972

    PubMed  Google Scholar 

  54. Seifarth H, Raupach R, Schaller S et al (????) Assessment of coronary artery stents using 16-slice MDCT angiography: evaluation of a dedicated reconstruction kernel and a noise reduction filter. Eur Radiol 15(4):721–726

    PubMed  Google Scholar 

  55. Sheth T, Dodd JD, Hoffmann U et al (2007) Coronary stent assessability by 64 slice multidetector computed tomography. Catheter Cardiovasc Interv 69(7):933–938

    PubMed  Google Scholar 

  56. Maintz D, Burg MC, Seifarth H et al (2009) Update on multidetector coronary CT angiography of coronary stents: in vitro evaluation of 29 different stent types with dual-source CT. Eur Radiol 19(1):42–49

    PubMed  Google Scholar 

  57. Maintz D, Seifarth H, Flohr T et al (????) Improved coronary artery stent visualization and in-stent stenosis detection using 16-slice computed-tomography and dedicated image reconstruction technique. Invest Radiol 38(12):790–795

    PubMed  Google Scholar 

  58. Maintz D, Juergens KU, Wichter T et al (2003) Imaging of coronary artery stents using multislice computed tomography: in vitro evaluation. Eur Radiol 13(4):830–835

    PubMed  Google Scholar 

  59. Hong C, Chrysant GS, Woodard PK, Bae KT (2004) Coronary artery stent patency assessed with in-stent contrast enhancement measured at multi-detector row CT angiography: initial experience. Radiology 233(1):286–291

    PubMed  Google Scholar 

  60. Pugliese F, Cademartiri F, van Mieghem C et al (2006) Multidetector CT for visualization of coronary stents. Radiographics 26(3):887–904

    PubMed  Google Scholar 

  61. Lee CW, Suh J, Lee SW et al (2007) Factors predictive of cardiac events and restenosis after sirolimus-eluting stent implantation in small coronary arteries. Catheter Cardiovasc Interv 69(6):821–825

    PubMed  Google Scholar 

  62. Lemos PA, Saia F, Ligthart JM et al (2003) Coronary restenosis after sirolimus-eluting stent implantation: morphological description and mechanistic analysis from a consecutive series of cases. Circulation 108(3):257–260

    PubMed  Google Scholar 

  63. Kastrati A, Dibra A, Mehilli J et al (2006) Predictive factors of restenosis after coronary implantation of sirolimus-or paclitaxel-eluting stents. Circulation 16 113(19):2293–2300

    Google Scholar 

  64. Dangas GD, Claessen BE, Caixeta A et al (2010) In-stent restenosis in the drug-eluting stent era. J Am Coll Cardiol 30 56(23):1897–1907

    Google Scholar 

  65. Schmermund A, Haude M, Baumgart D et al (1996) Non-invasive assessment of coronary Palmaz-Schatz stents by contrast enhanced electron beam computed tomography. Eur Heart J 17(10):1546–1553

    PubMed  CAS  Google Scholar 

  66. Knollmann FD, Moller J, Gebert A et al (2004) Assessment of coronary artery stent patency by electron-beam CT. Eur Radiol 14(8):1341–1347

    PubMed  Google Scholar 

  67. Maintz D, Grude M, Fallenberg EM et al (2003) Assessment of coronary arterial stents by multislice-CT angiography. Acta Radiol 44(6): 597–603

    PubMed  CAS  Google Scholar 

  68. Ligabue G, Rossi R, Ratti C et al (2004) Noninvasive evaluation of coronary artery stents patency after PTCA: role of multislice computed tomography. Radiol Med 108(1-2):128–137

    PubMed  Google Scholar 

  69. Kruger S, Mahnken AH, Sinha AM et al (2003) Multislice spiral computed tomography for the detection of coronary stent restenosis and patency. Int J Cardiol 89(2-3):167–172

    PubMed  Google Scholar 

  70. Cademartiri F, Mollet N, Lemos PA et al (2005) Usefulness of multislice computed tomographic coronary angiography to assess in-stent restenosis. Am J Cardiol 96(6):799–802

    PubMed  Google Scholar 

  71. Chabbert V, Carrie D, Bennaceur M et al (2007) Evaluation of in-stent restenosis in proximal coronary arteries with multidetector computed tomography (MDCT). Eur Radiol 17(6):1452–1463

    PubMed  CAS  Google Scholar 

  72. Gilard M, Cornily JC, Pennec PY et al (2006) Assessment of coronary artery stents by 16 slice computed tomography. Heart 92(1):58–61

    PubMed  CAS  Google Scholar 

  73. Gilard M, Cornily JC, Rioufol G et al (2005) Noninvasive assessment of left main coronary stent patency with 16-slice computed tomography. Am J Cardiol 95(1):110–112

    PubMed  Google Scholar 

  74. Kefer JM, Coche E, Vanoverschelde JL, Gerber BL (2007) Diagnostic accuracy of 16-slice multidetector-row CT for detection of in-stent restenosis vs detection of stenosis in nonstented coronary arteries. Eur Radiol 17(1):87–96

    PubMed  Google Scholar 

  75. Kitagawa T, Fujii T, Tomohiro Y et al (2006) Noninvasive assessment of coronary stents in patients by 16-slice computed tomography. Int J Cardiol 10 109(2):188–194

    Google Scholar 

  76. Ohnuki K, Yoshida S, Ohta M et al (2006) New diagnostic technique in multi-slice computed tomography for in-stent restenosis: pixel count method. Int J Cardiol 4 108(2):251–258

    Google Scholar 

  77. Schuijf JD, Bax JJ, Jukema JW et al (2004) Feasibility of assessment of coronary stent patency using 16-slice computed tomography. Am J Cardiol 94(4):427–430

    PubMed  Google Scholar 

  78. Watanabe M, Uemura S, Iwama H et al (2006) Usefulness of 16-slice multislice spiral computed tomography for follow-up study of coronary stent implantation. Circ J 70(6):691–697

    PubMed  Google Scholar 

  79. Cademartiri F, Schuijf JD, Pugliese F et al (2007) Usefulness of 64-slice multislice computed tomography coronary angiography to assess in-stent restenosis. J Am Coll Cardiol 5 49(22):2204–2210

    Google Scholar 

  80. Carbone I, Francone M, Algeri E et al (2008) Non-invasive evaluation of coronary artery stent patency with retrospectively ECG-gated 64-slice CT angiography. Eur Radiol Feb 18(2): 234–243

    Google Scholar 

  81. Carrabba N, Bamoshmoosh M, Carusi LM et al (2007) Usefulness of 64-slice multidetector computed tomography for detecting drug eluting in-stent restenosis. Am J Cardiol 100(12):1754–1758

    PubMed  Google Scholar 

  82. Das KM, El-Menyar AA, Salam AM et al (2007) Contrast-enhanced 64-section coronary multidetector CT angiography versus conventional coronary angiography for stent assessment. Radiology 245(2):424–432

    PubMed  CAS  Google Scholar 

  83. Ehara M, Kawai M, Surmely JF et al (2007) Diagnostic accuracy of coronary in-stent restenosis using 64-slice computed tomography: comparison with invasive coronary angiography. J Am Coll Cardiol 49(9):951–959

    PubMed  Google Scholar 

  84. Manghat N, VanLingen R, Hewson P et al (2008) Usefulness of 64-detector row computed tomography for evaluation of intracoronary stents in symptomatic patients with suspected in-stent restenosis. Am J Cardiol 101(11):1567–1573

    PubMed  Google Scholar 

  85. Nakamura K, Funabashi N, Uehara M et al (2008) Impairment factors for evaluating the patency of drug-eluting stents and bare metal stents in coronary arteries by 64-slice computed tomography versus conventional coronary angiography. Int J Cardiol 28 130(3):349–356

    Google Scholar 

  86. Oncel D, Oncel G, Karaca M (2007) Coronary stent patency and in-stent restenosis: determination with 64-section multidetector CT coronary angiography—initial experience. Radiology 42(2):403–409

    Google Scholar 

  87. Rist C, von Ziegler F, Nikolaou K et al (2006) Assessment of coronary artery stent patency and restenosis using 64-slice computed tomography. Acad Radiol 13(12):1465–1473

    PubMed  Google Scholar 

  88. Rixe J, Achenbach S, Ropers D et al (2006) Assessment of coronary artery stent restenosis by 64-slice multi-detector computed tomography. Eur Heart J 27(21):2567–2572

    PubMed  Google Scholar 

  89. Schuijf JD, Pundziute G, Jukema JW et al (2007) Evaluation of patients with previous coronary stent implantation with 64-section CT. Radiology 245(2):416–423

    PubMed  Google Scholar 

  90. Van Mieghem CA, Cademartiri F, Mollet NR et al (2006) Multislice spiral computed tomography for the evaluation of stent patency after left main coronary artery stenting: a comparison with conventional coronary angiography and intravascular ultrasound. Circulation 15 114(7):645–653

    Google Scholar 

  91. Hecht HS, Zaric M, Jelnin V et al (2008) Usefulness of 64-detector computed tomographic angiography for diagnosing in-stent restenosis in native coronary arteries. Am J Cardiol 101(6):820–824

    PubMed  Google Scholar 

  92. Andreini D, Pontone G, Bartorelli AL et al (2009) Comparison of feasibility and diagnostic accuracy of 64-slice multidetector computed tomographic coronary angiography versus invasive coronary angiography versus intravascular ultrasound for evaluation of in-stent restenosis. Am J Cardiol 15 103(10):1349–1358

    Google Scholar 

  93. Wykrzykowska JJ, Arbab-Zadeh A, Godoy G et al (2010) Assessment of in-stent restenosis using 64-MDCT: analysis of the CORE-64 Multicenter International Trial. AJR Am J Roentgenol 194(1):85–92

    PubMed  Google Scholar 

  94. Abdelkarim MJ, Ahmadi N, Gopal A et al (2010) Noninvasive quantitative evaluation of coronary artery stent patency using 64-row multidetector computed tomography. J Cardiovasc Comput Tomogr 4(1):29–37

    PubMed  Google Scholar 

  95. Carrabba N, Schuijf JD, de Graaf FR et al (2010) Diagnostic accuracy of 64-slice computed tomography coronary angiography for the detection of in-stent restenosis: a metaanalysis. J Nucl Cardiol 17(3):470–478

    PubMed  Google Scholar 

  96. Kumbhani DJ, Ingelmo CP, Schoenhagen P et al (2009) Meta-analysis of diagnostic efficacy of 64-slice computed tomography in the evaluation of coronary in-stent restenosis. Am J Cardiol 15 103(12):1675–1681

    Google Scholar 

  97. Sun Z, Almutairi AM. Diagnostic accuracy of 64 multislice CT angiography in the assessment of coronary in-stent restenosis: a metaanalysis. Eur J Radiol 2010 Feb 73(2):266–273

    PubMed  Google Scholar 

  98. Oncel D, Oncel G, Tastan A, Tamci B (2008) Evaluation of coronary stent patency and instent restenosis with dual-source CT coronary angiography without heart rate control. AJR Am J Roentgenol 191(1):56–63

    PubMed  Google Scholar 

  99. Pugliese F, Weustink AC, Van Mieghem C et al (2008) Dual source coronary computed tomography angiography for detecting in-stent restenosis. Heart 94(7):848–854

    PubMed  CAS  Google Scholar 

  100. Pflederer T, Marwan M, Renz A et al (2009) Noninvasive assessment of coronary in-stent restenosis by dual-source computed tomography. Am J Cardiol 15 103(6):812–817

    Google Scholar 

  101. de Graaf FR, Schuijf JD, van Velzen JE et al (2010) Diagnostic accuracy of 320-row multidetector computed tomography coronary angiography to noninvasively assess in-stent restenosis. Invest Radiol 45(6):331–340

    PubMed  Google Scholar 

  102. Mark DB, Berman DS, Budoff MJ et al (2010) ACCF/ACR/AHA/NASCI/SAIP/SCAI/SCCT 2010 expert consensus document on coronary computed tomographic angiography: a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents. J Am Coll Cardiol 55(23):2663–2699

    PubMed  Google Scholar 

  103. Taylor AJ, Cerqueira M, Hodgson JM et al (2010) ACCF/SCCT/ACR/AHA/ASE/ASNC/ NASCI/SCAI/SCMR 2010 appropriate use criteria for cardiac computed tomography. A report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, the Society of Cardiovascular Computed Tomography, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the American Society of Nuclear Cardiology, the North American Society for Cardiovascular Imaging, the Society for Cardiovascular Angiography and Interventions, and the Society for Cardiovascular Magnetic Resonance. J Am Coll Cardiol 56(22):1864–1894

    Google Scholar 

  104. Bastarrika G, Lee YS, Ruzsics B, Schoepf UJ (2009) Coronary CT angiography: applications. Radiol Clin North Am 47(1):91–107

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gorka Bastarrika .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Italia

About this chapter

Cite this chapter

Bastarrika, G., De Cecco, C.N., Schoepf, U.J. (2013). CT Angiography of Coronary Stents. In: Dowe, D.A., Fioranelli, M., Pavone, P. (eds) Imaging Coronary Arteries. Springer, Milano. https://doi.org/10.1007/978-88-470-2682-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2682-7_13

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-2681-0

  • Online ISBN: 978-88-470-2682-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics