Skip to main content

Cardiac Surgery

  • Chapter
  • 3333 Accesses

Abstract

Adequate fluid replacement in cardiac patients is fundamental to successful surgery. In patients undergoing cardiac surgery, correct fluid management maintains an adequate circulatory volume and a proper electrolyte and acid-base balance, avoiding arrhythmic (i.e., atrial fibrillation) and hemodynamic (i.e., hypotension, pulmonary edema) complications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vretzakis G, Kleitsaki A, Aretha D, Karanikolas M (2011) Management of intraoperative fluid balance and blood conservation techniques in adult cardiac surgery. Heart Surg Forum 14:E28–39

    Article  PubMed  Google Scholar 

  2. Stephens R, Mythen M (2003) Optimizing intraoperative fluid therapy. Current Opinion in Anaesthesiology 16:385–392

    PubMed  Google Scholar 

  3. Adams HA (2007) Volumen und Flüssigkeitsersatz — Physiologie, Pharmakologie und klinischer Einsatz. Anästh Intensivmed 48:448–60

    Google Scholar 

  4. Rackow EC, Falk JL, Fein IA, Siegel JS, Packman MI, Haupt MT, Kaufmann BS, Putnam D (1983) Fluid resuscitation in circulatory shock: a comparison of the cardio-respiratory effects of albumin, hetastarch, and saline solutions in patients with hypovolemic and septic shock. Crit Care Med 11:839–850

    Article  PubMed  CAS  Google Scholar 

  5. Pradeep A, Rajagopalam S, Kolli HK, Patel N, Venuto R, Lohr J, Nader ND (2010) High volumes of intravenous fluid during cardiac surgery are associated with increased mortality. HSR Proceedings in Intensive Care and Cardiovascular Anesthesia 2:287–296

    CAS  Google Scholar 

  6. Stein L, Berand J, Morisette M (1975) Pulmonary edema during volume infusion. Circulation 52:483–489

    Article  PubMed  CAS  Google Scholar 

  7. Rackow EC, Fein A, Leppo J et al (1977) Colloid osmotic pressure as a prognostic indicator of pulmonary edema and mortality in the critical ill. Chest 72:709–713

    Article  PubMed  CAS  Google Scholar 

  8. Ley SJ, Miller K, Skov P, Preig P (1990) Crystalloid versus colloid fluid therapy after cardiac surgery Heart Lung 19:31–40

    PubMed  CAS  Google Scholar 

  9. Kozek-Langenecker SA (2005) Effects of hydroxyethyl starch solutionson hemostasis. Anesthesiology 103:654–60

    Article  PubMed  Google Scholar 

  10. Brunkhorst FM, Engel C, Bloos F et al (2008) German Competence Network Sepsis (Sep-Net). Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N Engl J Med 358:125–39

    Article  PubMed  CAS  Google Scholar 

  11. Raja SG, Akhtar S, Shahbaz Y, Masood A (2011) In cardiac surgery patients does Voluven® impair coagulation less than other colloids? Interact Cardiovasc Thorac Surg 12:1022–7

    Article  PubMed  Google Scholar 

  12. Dieterich HJ, Weissmuller T, Rosenberger P, Eltzschig HK (2006) Effect of hydroxyethyl starch on vascular leak syndrome and neutrophil accumulation during hypoxia. Crit Care Med 34:1775–82

    Article  PubMed  CAS  Google Scholar 

  13. Traumer LD, Brazeal BA, Schmitz M et al (1992) Pentafraction reduces the lung lymph response after endotoxin administration in the ovine model. Circ Shock 36:93–6

    Google Scholar 

  14. Lang K, Boldt J, Suttner S, Haisch G (2001) Colloids versus crystalloids and tissue oxygen tension in patients undergoing major abdominal surgery. Anesth Analg 93:405–9

    PubMed  CAS  Google Scholar 

  15. Tian J, Lin X, Guan R, Xu JG (2004) The effects of hydroxyethyl starch on lung capillary permeability in endotoxic rats and possible mechanisms. Anesth Analg 98:768–74

    Article  PubMed  CAS  Google Scholar 

  16. Gan TJ, Bennett-Guerrero E, Phillips-Bute BIH, Wakeling H, Moskowitz DM, Olufolabi Y, Konstadt SN, Bradford C, Glass PS, Machin SJ, Mythen MG (1999) Hextend, a physiologically balanced plasma expander for large volume use in major surgery: a randomized phase III clinical trial. Anesth Analg 88:992–8

    PubMed  CAS  Google Scholar 

  17. Russell JA, Navickis RJ, Wilkes MM (2004) Albumin versus crystalloid for pump priming in cardiac surgery: meta-analysis of controlled trials. J Cardiothorac Vasc Anesth 18:429–37

    Article  PubMed  CAS  Google Scholar 

  18. Niemi TT, Suojaranta-Ylinen RT, Kukkonen SI, Kuitunen AH (2006) Gelatin and hydroxyethyl starch, but not albumin, impair hemostasis after cardiac surgery. Anesth Analg 102:998–1006

    Article  PubMed  CAS  Google Scholar 

  19. Van der Linden PJ, De Hert SG, Daper A, Trenchant A, Schmartz D, Defrance P, Kimbimbi P (2004) 3.5% urea-linked gelatin is as effective as 6% HES 200/0.5 for volume management in cardiac surgery patients. J Anaesth 51:236–41

    Google Scholar 

  20. Hüter L, Simon TP, Weinmann L, Schuerholz T, Reinhart K, Wolf G, Amann KU, Marx G (2009) Hydroxyethylstarch impairs renal function and induces interstitial proliferation, macrophage infiltration and tubular damage in an isolated renal perfusion model. Crit Care 13:R23. Epub Feb 25

    Article  PubMed  Google Scholar 

  21. Allison KP, Gosling P, Jones S, Pallister I, Porter KM (1999) Randomized trial of hydroxyethyl starch versus gelatin for trauma resuscitation. J Trauma 47:1114–21

    Article  PubMed  CAS  Google Scholar 

  22. Ooi JS, Ramzisham AR, Zamrin MD (2009) Is 6% hydroxyethyl starch 130/0.4 safe in coronary artery bypass graft surgery? Asian Cardiovasc Thorac Ann 17(4):368–72

    Article  PubMed  Google Scholar 

  23. Winkelmayer WC, Glynn RJ, Levin R, Avorn J (2003) Hydroxyethyl starch and change in renal function in patients undergoing coronary arterybypass graft surgery. Kidney Int 64(3): 1046

    Article  PubMed  Google Scholar 

  24. Niemi T, Schramko A, Kuitunen A, Kukkonen S, Suojaranta-Ylinen R (2008) Haemodynamics and acid-base equilibrium after cardiac surgery: comparison of rapidly degradable hydroxyethyl starch solutions and albumin. Scand J Surg 97(3):259–65

    PubMed  CAS  Google Scholar 

  25. Roche AM, James MF, Grocott MP, Mythen MG (2002) Coagulation effects of in vitro serial haemodilution with a balanced electrolyte hetastarch solution compared with a saline-based hetastarch solution and lactated Ringer’s solution. Anaesthesia 57:950–5

    Article  PubMed  CAS  Google Scholar 

  26. Martin G et al (2002) A prospective, randomized comparison of thrombelastographic coagulation profile in patients receiving lactated Ringer’s solution, 6% hetastarch in a balanced-saline vehicle, or 6% hydroxyethyl starch in saline during major surgery. J Cardiothorac Vasc Anesth 16:441–6

    Article  PubMed  CAS  Google Scholar 

  27. Base EM, Standl T, Lassnigg A, Skhirtladze K, Jungheinrich C, Gayko D, Hiesmayr M (2011) Efficacy and safety of hydroxyethyl starch 6% 130/0.4 in a balanced electrolyte solution (Volulyte) during cardiac surgery J Cardiothorac Vasc Anesth 25(3):407–14

    Article  PubMed  CAS  Google Scholar 

  28. Foglia RP, Lazar HL, Steed DL et al (1978) Iatrogenic myocardial edema with crystalloid primes: effects on left ventricular compliance, performance and perfusion. Surg Forum 29:312–315

    PubMed  CAS  Google Scholar 

  29. Hoeft A et al (1991) Priming of cardiopulmonary bypas s with human albumin or Ringer’s Lactate: effect on colloiosmotic pressure and extravascular lung water. Br J Anesth 66:73–80

    Article  CAS  Google Scholar 

  30. RM Sade, MR Stroud, FA Crawford Jr, JM Kratz, JP Dearing and DM Bartles (1985) Aprospective randomized study of hydroxyethyl starch, albumin, and lactated Ringer’s solution as priming fluid for cardiopulmonary bypass. The Journal of Thoracic and Cardiovascular Surgery 89:713–722

    PubMed  CAS  Google Scholar 

  31. Gallandat Huet RC, Siemons AW, Baus D, van-Rooyen-Butijn WT, Haagenaars JA, van Oeveren W, Bepperling F (2000) A novel hydroxyethyl starch (Voluven) for effective perioperative plasma volume substitution in cardiac surgery. Can J Anaesth 47:1207–1215

    Article  Google Scholar 

  32. Haisch G, Boldt J, Krebs C, Suttner S, Lehmann A, Isgro F (2001) Influence of a new hydroxyethylstarch preparation (HES 130/0.4) on coagulation in cardiac surgical patients. J Cardiothorac Vasc Anesth 15:316–321

    Article  PubMed  CAS  Google Scholar 

  33. American Thoracic Society Consensus Statement (2004) Evidence-based colloid use in the critically ill. Am J Respir Crit Care Med 170:1247–1259

    Article  Google Scholar 

  34. Appelman MH, van Barneveld LJ, Romijn JW, Vonk AB, Boer C (2011 May) The impact of balanced hydroxylethyl starch cardiopulmonary bypass priming solution on the fibrin part of clot formation: ex vivo rotation thromboelastometry. Perfusion 26(3): 175–80

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marialuisa Vennari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Italia

About this chapter

Cite this chapter

Agrò, F.E., Fries, D., Vennari, M. (2013). Cardiac Surgery. In: Agrò, F.E. (eds) Body Fluid Management. Springer, Milano. https://doi.org/10.1007/978-88-470-2661-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2661-2_9

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-2660-5

  • Online ISBN: 978-88-470-2661-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics