Skip to main content

Fluid Management in Neurosurgery

  • Chapter
Body Fluid Management

Abstract

The brain and spinal cord are isolated from other tissues by the blood-brain barrier (BBB): a uniquely composed, strictly controlled, extracellular environment surrounding the central nervous system (CNS), i.e., neurons, astrocytes, and pericytes. Anatomically, the walls of the BBB differ from the peripheral capillaries as a continuous and not fenestrated endothelium, which blocks the free diffusion of interstitial fluid solutes [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Begley DJ (2004) Delivery of therapeutic agents to the central nervous system: the problems and the possibilities. Pharmacol Ther 104:29–45

    Article  PubMed  CAS  Google Scholar 

  2. Fenstermacher JD, Johnson JA (1966) Filtration and reflection coefficient the rabbit blood-brain barrier. Am J Phisiol 211:341–346

    CAS  Google Scholar 

  3. Zornow MH, Todd MM, More SS (1987) The acute cerebral effects of changes in plasma osmolality and oncotic pressure. Anesthesiology 67:936–941

    Article  PubMed  CAS  Google Scholar 

  4. Avezaat JH, Van Eijndhoven JH, Wyper DJ (1979) Cerebrospinal fluid pulse pressure and intracranial volume-pressure relationships. J Neurol Neurosurg Psychiatry 42:687–700

    Article  PubMed  CAS  Google Scholar 

  5. Bouma GJ, Muizelaar JP, Bandoh K et al (1992) Blood pressure and intracranial pressure-volume dynamics in severe head injury: relationship with cerebral flow. J Neurosurg 77:15–19

    Article  PubMed  CAS  Google Scholar 

  6. Paulson OB, Strandgaard S, Edvinsson L (1990) Cerebral autoregulation. Cerebrovasc Brain Metab Rev 2:161–192

    PubMed  CAS  Google Scholar 

  7. Tans JT, Poortvliet DC (1989) Relationship between compliance and resistance to outflow of CSF in adult hydrocephalus. J Neurosurg 71:59–62

    Article  PubMed  CAS  Google Scholar 

  8. Langfitt TW, Weistein JD, Kassel NF (1965) Cerebral vasomotor paralysis produced by intracranial hypertension. Neurology (Minneap.) 15:622–641

    Article  CAS  Google Scholar 

  9. Langfitt TW (1969) Increased intracranial pressure. Clinical Neurosurgery 16:436–471

    PubMed  CAS  Google Scholar 

  10. Dodge PR, Crawford JD, Probst JH (1960) Studies in experimental water intoxication. Arch Neurol 5:513–529

    Article  Google Scholar 

  11. Zornow MH, Scheller MS, Todd MM et al (1988) Acute cerebral effects of isotonic crystalloid and colloid solutions following cryogenic brain injury in the rabbit. Anesthesiology 69:180–184

    Article  PubMed  CAS  Google Scholar 

  12. Kaieda R, Todd MM, Warner DS (1989) Prolonged reduction in colloid oncotic pressure does not increase brain edema following cryogenic injury in rabbits. Anesthesiology 71:554–560

    Article  PubMed  CAS  Google Scholar 

  13. Tommasino C, Picozzi V (2007) Volume and electrolyte management. Best Pract Res Clin Anaesthesiol 21:497–516

    Article  PubMed  Google Scholar 

  14. Shenkin HA, Benzier HO, Bouzarth W (1976) Restricted fluid intake: rational management of the neurosurgical patient. J Neurosurg 45:432–6

    Article  PubMed  CAS  Google Scholar 

  15. Chestnut RM, Marshall LF, Klauber MR et al (1993) The role of secondary brain injury in determining outcome from severe head injury. J Trauma 34:216–22

    Article  Google Scholar 

  16. Clifton GL, Miller ER, Choi SC, Levin HS. (2002) Fluid thresholdsand outcome from severe brain injury. Critical Care Medicine 30:739–745

    Article  PubMed  Google Scholar 

  17. Andrews BT (1993) The intensive care management of patients with head injury. In: Andrews BT (ed) Neurosurgical Intensive Care. New York, McGraw-Hill, pp 227–242

    Google Scholar 

  18. Lustenberger T, Talving P, Kobayashi L, Barmparas G et al (2010) Early coagulopathy after isolated severe traumatic brain injury: relationship with hypoperfusion challenged. Journal of Trauma-Injury Infection & Critical Care 69:1410–1414

    Article  Google Scholar 

  19. Talving P, Lustenberger T, Lam L et al (2011) Coagulopathy after isolated severe traumatic brain injury in children. Journal of Trauma-Injury Infection & Critical Care 71:1205–1210. Abstract.

    Article  Google Scholar 

  20. Harrison MJG (1989) Influence of haematocrit in the cerebral circulation. Cerebrovasc Brain Metabol Rev 1:55–67

    CAS  Google Scholar 

  21. Hudak ML, Koehler RC, Rosenberg AA et al (1986) Effect of hematocrit on cerebral blood flow. Am J Phisiol 251:H63–70

    CAS  Google Scholar 

  22. Tango HK, Schmidt AP, Mizumoto N, Lacava M, Auler JOC Jr (1986) Low Hematocrit levels increase intracranial pressure in an animal model of cryogenic brain injury. Journal of Trauma-injury Infection & critical Care 66:720–726

    Article  Google Scholar 

  23. Tommasino C, More S, Todd MM (1988) Cerebral effects of isovolemic hemodilution with crystalloid or colloid solutions in normal rabbits. Crit Care Med 16:862–8

    Article  PubMed  CAS  Google Scholar 

  24. Tommasino C (2002) Fluid and neurosurgical patient. Anesthesiology Clin N Am 20:329–346

    Article  Google Scholar 

  25. Shenkin HA, Goluboff B, Haft H (1964) Further observations on the effects of abruptly increased osmotic pressure of plasma on cerebrospinal pressure in man. J neurosurg 22:563–568

    Google Scholar 

  26. Ravussin P, Archer DP, Meyer E et al (1985) The effects of rapid infusions of saline and mannitol on cerebral blood volume and intracranial pressure in dogs. Can Anaesth Soc J 32:506–15

    Article  PubMed  CAS  Google Scholar 

  27. Kassell NF, Baumann KW, Hitchon PW et al (1982) The effects of high dose mannitol on cerebral blood flow in dogs with normal intracranial pressure. Stroke 13:59–61

    Article  PubMed  CAS  Google Scholar 

  28. Moreno M, Murphy C, Goldsmith C (1969) Increase in serum potassium resulting from the administration of hypertonic mannitol and other solutions. J Lab Clin Med 73:291–298

    PubMed  CAS  Google Scholar 

  29. Worthley LIG, Cooper DJ, Jones N (1988) Treatment of resistant intracranial hypertensionwith hypertonic saline. J Neurosurg 68:478–481

    Article  PubMed  CAS  Google Scholar 

  30. Suarez JI, Qureshi AI, Bhardwaj A et al (1998) Treatment of refractory intracranial hypertension with 23,4% saline. Crit Care Med 26:1118–1122

    Article  PubMed  CAS  Google Scholar 

  31. Toung TJK, Chen CH, Lin C, Bhardwaj A (2007) Osmotherapy with hypertonic saline attenuates water content in brain and extracerebral organs. Critical Care Medicine 35:526–531 (Abstract)

    Article  PubMed  Google Scholar 

  32. Hauer EM, Stark D, Staykov D et al (2011) Early continous hypertonic saline infusion in patients with severe cerebrovascular disease. Crit Care Med 39:1766–1772 (Abstract)

    Article  PubMed  CAS  Google Scholar 

  33. Toung TJ, Nyquist P, Mirski MA (2008) Effect of hypertonic saline concentration on cerebral and visceral organ water in an uninjuredrodent model. Crit Care Med 36:256–261 (Abstract)

    Article  PubMed  CAS  Google Scholar 

  34. Francony G, Fauvage B, Falcon D et al (2008) Equimolar doses of mannitol and hypertonic saline in the treatment of increate intracranial pressure. Crit Care Med 36:795–800 (Abstract)

    Article  PubMed  CAS  Google Scholar 

  35. Kamel H, Navi BB, Nakagawa K et al (2011) Hypertonic saline versus mannitol for the treatment of elevated intracranial pressure: A meta-analy sis of randomized clinical trials. Crit Care Med 39:554–559 (Abstract)

    Article  PubMed  CAS  Google Scholar 

  36. Khanna S, Davis D, Peterson B et al (2000) Use of hypertonic saline in the treatment of severe refractory posttraumatic intracranial hypertension in pediatric traumatic brain injury. Crit Care Med 28:1144–1151 (Abstract)

    Article  PubMed  CAS  Google Scholar 

  37. Froelich M, Ni Q, Wess C et al (2009) Continous hypertonic saline therapy and the occurrence of complications in neurocritically ill patients. Crit Care Med 37:14331441 (Abstract)

    Article  Google Scholar 

  38. Shackford SR, Fortlage DA, Peters RM et al (1987) Serum osmolar and electrolyte changes associated with large infusions of hypertonic sodium lactate for intravascular volume expansion of patients undergoing aortic reconstruction. Surg Gynecol Obstet 164:127–136

    PubMed  CAS  Google Scholar 

  39. Shackford SR, Sise MJ, Fridlund PH et al (1983) Hypertonic sodium lactate versus lactated ringer’s solution for intravenous fluid terapy in operations on the abdominal aorta. Surgery 94:41–51

    PubMed  CAS  Google Scholar 

  40. Sheikh AA, Matsuoka T, Wisner DH (1996) Cerebral effects of resuscitation with hypertonic saline and a new low-sodium hypertonic fluid in hemorrhagic shock and head injury. Critical Care Medicine 24:1226–1232 (Abstract)

    Article  PubMed  CAS  Google Scholar 

  41. Mayzler O, Leon A, Eilig I et al (2006) The effect of hypertonic (3%) saline with and without furosemide on plasma osmolality, sodium concentration, and brain water content after closed head trauma in rats. J Neurosurg Anesth 18:24–31

    Article  Google Scholar 

  42. Todd MM, Cutkomp J, Brian JE (2006) Influence of mannitol and furosemide, alone and in combination, on brain water content after fluid percussion injury. Anesthesiology 105:1176–1181

    Article  PubMed  CAS  Google Scholar 

  43. Rudnick MR, Goldfarb S (2003) Pathogenesis of contrasted-induced nephropathy: Experimentaland clinical observations with an emphasis on the role of osmolality. Rev Cardvasc Med 4(Suppl 5):s28–33

    Google Scholar 

  44. Visweswaran P, Massin EK, Dubose TD (1997) Mannitol-induced acute renal failure. J Am SocNephrol 8:1028–1033

    CAS  Google Scholar 

  45. Moran M, Kapsner C (1987) Acute renal failure associated with elevated plasma oncotic pressure. N Eng J Med 317:150–153

    Article  CAS  Google Scholar 

  46. Hüter L, Simon TP, Weinmann L et al (2009) Hydroxyethylstarch impairs renal function and induces interstitial proliferation, macrophage infiltration and tubular damage in an isolated renal perfusion model. Critical Care 13:R23

    Article  PubMed  Google Scholar 

  47. Treib J, Haass A, Pindur G (1997) Coagulation disorders caused by hydroxyethyl starch. Thromb Haemost 78:974–983

    PubMed  CAS  Google Scholar 

  48. Franz A, Bräunlich P, Gamsjäger T, Felfernig M et al (2001) The effects of hydroxyethyl starches of varying molecular weights on platelet function. Anesth Analg 92:1402–1407

    Article  PubMed  CAS  Google Scholar 

  49. Varney KL, Young B, Hatton J (2003) Albumin use in Neurosurgical Critical Care. Pharmacotherapy 23:88–92

    Article  PubMed  Google Scholar 

  50. University Health System Consortium (2000) Technology assessment: albumin, non protein colloid, and crystalloid solutions. Oak Brook IL: University Health System Consortium, 25

    Google Scholar 

  51. Chiara O, Pelosi P, Brazzi L et al (2003) Resuscitation from hemorrhagic shock: Experimental model comparing normal saline, dextran, and hypertonic saline solutions. Critical Care Medicine 31:1915–1922 (Abstract)

    Article  PubMed  CAS  Google Scholar 

  52. Bentsen G, Breivic H, Lundar T et al (2006) Hypertonic saline (7,2%) in 6% hydroxyethyl starch reduces intracranial pressure and improves hemodynamics in a placebo-controlled study involving stable patients with subarachnoid hemorrhage. Critical Care Medicine 34:2912–2917 (Abstract)

    PubMed  CAS  Google Scholar 

  53. Elliott MB, Jallo JJ, Gaughan JP, Tuma RF (2007) Effects of crystalloid-colloid solutions on traumatic brain injury. J Neurotrauma 24:195–202

    Article  PubMed  Google Scholar 

  54. Battison C, Andrews PJD, Graham C, Petty T (2005) Randomized, controlled trial on the effect of a 20% mannitol solution and a 7,5% saline/6%dextran solution on increased intracranial pressure after brain injury. Critical Care Medicine 33:196–202 (Abstract)

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiara Candela .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Italia

About this chapter

Cite this chapter

Martorano, P., Candela, C., Colonna, R., Agrò, F.E. (2013). Fluid Management in Neurosurgery. In: Agrò, F.E. (eds) Body Fluid Management. Springer, Milano. https://doi.org/10.1007/978-88-470-2661-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2661-2_14

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-2660-5

  • Online ISBN: 978-88-470-2661-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics