Skip to main content

Abstract

In obese patients a higher rate of cardiac output fraction is directed from the brain and other organs to adipose tissue. The anesthetic agents stored in fat depots will return to the circulation when the administration of anesthetic is discontinued and recovery from anesthesia can be delayed. A significative reduction of opioid consumption has been demonstrated with xenon anesthesia. Xenon may inhibit postoperative proinflammatory imbalance of cytokine production in morbidly obese patients undergoing elective surgery. The type of opioid used during general anesthesia in the morbidly obese can also influence recovery and the postoperative period. Dexmedetomidine significantly attenuates postoperative pain and reduces opioid and volatile anesthetic requirements in morbidly obese patients, without causing any cardio-respiratory depression and ensuring faster neuromuscular recovery and smooth emergence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mazze RI, Cousins M, Barr G (1974) Renal effects and metabolism of isoflurane in man. Anesthesiology 40:536–542

    Article  PubMed  CAS  Google Scholar 

  2. Murray J, Trinick T (1992) Plasma fluoride concentrations during and after prolonged anesthesia: a comparison of halothane and isoflurane. Anesth Analg 74:236–240

    Article  PubMed  CAS  Google Scholar 

  3. Koblin DD, Eger EI, Johnson BH (1988) I-653 resists degradation in rats. Anesth Analg 73:180–185

    Google Scholar 

  4. Jones RM, Koblin DD, Cashman JN (1990) Biotrasformation and hepato-renal function in volunteers after exposure to desflurane (I-653). Br J Anaesth 64:482–487

    Article  PubMed  CAS  Google Scholar 

  5. Wark HJ (1983) Postoperative jaundice in children: the influence of halothane. Anaesthesia 38:237–242

    PubMed  CAS  Google Scholar 

  6. Bito H, Ikeda K (1994) Long-duration, low-flow sevoflurane anesthesia using two carbon dioxide absorbents: quantification of degradation products in the circuit. Anesthesiology 81:340–345

    Article  PubMed  CAS  Google Scholar 

  7. Eger EI, Bahlman SH (1971) Is the end-tidal anesthetic partila pressure an accurate measure of the arterial anesthetic partila pressure? Anesthesiology 35:301–303

    Google Scholar 

  8. Su Jy, Bell Jg (1982) Effects of isoflurane on functionally skinned myocardial fibers from rabbits. Anesthesiology 57:A11

    Article  Google Scholar 

  9. Harkin TJ, Muzzi M, Lopaka CW (1994) Direct negative inotropic and lusitropic effects of sevoflurane. Anesthesiology 74:120

    Google Scholar 

  10. Malan TP, Di Nardo JA, Isner RJ (1995) Cardiovascular effects of sevoflurane compared with those of isoflurane in volunteers. Anesthesiology 83:918

    Article  PubMed  CAS  Google Scholar 

  11. Weiskopf RB, Moore NA, Eger EI (1994) Rapid increase in desflurane concentration is associated with greater transient cardiovascular stimulation than with rapid increase in isoflurane concentration in humans. Anesthesiology 80:1035

    Article  PubMed  CAS  Google Scholar 

  12. Larson CP, Eger EI, Muallem M (1969) The effects of diethyl ether and methoxyflurane on ventilation. Anesthesiology 30:174

    Article  PubMed  CAS  Google Scholar 

  13. Green WB Jr (1995) The ventilator effects of sevoflurane. Anesth Analg 81:S23–S26

    Article  PubMed  CAS  Google Scholar 

  14. Pandit UA, Stende GM, Leach AB (1985) Induction and recovery characteristics of isoflurane and halothane anaesthesia for short outpatient operations in children. Anaesthesia 40:1226

    Article  PubMed  CAS  Google Scholar 

  15. Juvin P, Vadam C, Malek, Dupont H, Marmuse JP, Desmonts JM (2000) Postoperative recovery after desflurane, propofol or isoflurane anesthesia among morbidly obese patients: a prospective randomized study. Anesth Analg 91: 714–719

    Google Scholar 

  16. Sollazzi L, Perilli V, Modesti C, Annetta MG, Ranieri R, Tacchina RM, Proietti R (2001) Volatile anesthesia in bariatric surgery. Obes Surg 11:623–626

    Article  PubMed  CAS  Google Scholar 

  17. Strum DP, Eger EI (1987) Partition coefficients of desflurane in human blood saline and olive oil. Anesth Analg 66:971–973

    Google Scholar 

  18. Arain SR, Barth CD, Shankar H, Eberth TJ (2005) Choice of volatile anesthetic for the morbidly obese patients: sevoflurane or desflurane. J Clin Anesth 17:413–419

    Article  PubMed  CAS  Google Scholar 

  19. La Colla G, La Colla L, Turi S, Poli D, Albertin A, Pasculli N, Bergonzi PC, Gonfalini M, Ruggirei F (2007) Effect of morbidity obesity on kinetic of desflurane: wash-in wash-out curves and recovery times. Minerva Anestesiol 73:275–279

    Google Scholar 

  20. Casati A, Bignami E, Spreafico E, Mamo D (2004) Effects of obesity on wash-in and wash-out curves of sevoflurane. Eur J Anaesthesiol 21:243–245

    CAS  Google Scholar 

  21. De Baerdemaeker LE, Struys MM, Jacobs S (2003) Optimization of desflurane administration in morbidly obese patients: a comparison with sevoflurane using an ‘inahalation bolus’ technique. Br J Anaesth 91:638–650

    Article  PubMed  Google Scholar 

  22. De Baerdemaeker LE, Jacobs S, Den Baluwen N, Pattyn P, Herregods L, Mortier E, Struys M (2006) Postoperative results after desflurane or sevoflurane combined with remifentanil in morbidly obese patients. Obes Surg 16:728–733

    Article  PubMed  Google Scholar 

  23. Rossaint R, Reyle-Hahn M, Sculte J (2003) Multicenter randomized comparison of the efficacy and safety of Xenon and Isoflurane in patients undergoing elective surgery. Anesthesiology 98(1):6–13

    Article  PubMed  CAS  Google Scholar 

  24. Ma D, Lim T, Xu J (2009) Xenon preconditioning protects against renal ischemic-reperfusion injury via Hif-1alfa activation. J Am Soc Nephrol 20(4):713–720

    Article  PubMed  CAS  Google Scholar 

  25. Goto T, Suwa K, Uezono S, Ichinose F, Uchiyama M, Morita S (1998) The blood-gas partition coefficient of Xenon may be lower than generally accepted. Br J Anaesth 80(2):255–256

    Article  PubMed  CAS  Google Scholar 

  26. Calzia E, Stahl W, Handschuh T (1999) Respiratory mechanics during xenon anesthesia in pigs: comparison with nitrous oxide. Anesthesiology 91(5):1378–1386

    Article  PubMed  CAS  Google Scholar 

  27. Wood LDH, Bryan AC, Bau SK (1976) Effect of increased gas density on pulmonary gas exchange in man. J Appl Physiol 41(2):206–210

    PubMed  CAS  Google Scholar 

  28. Sanders RD, Maze M (2005) Xenon: from stranger to guardian. Curr Opin Anaesthesiol 18(4):405–411

    Article  PubMed  Google Scholar 

  29. Cattano D, Valleggi S, Ma D (2008) Xenon induces transcription of ADNP in neonatal rat brain. Neurosci Lett 440(3):217–221

    Article  PubMed  CAS  Google Scholar 

  30. Abramo A, Di Salvo C, Fortran F, Forfori F, Anselmino M, Giunta F (2010) Xenon anesthesia improves respiratory gas exchanges in morbidly obese patients. J Obes. pii: 421593. [Epub 2010 Mar 2]

    Google Scholar 

  31. McBride WT, Armstrong MA, McBride SJ (1996) Immunomodulation: an important concept in modern anaesthesia. Anaesthesia 51:465–473

    Article  PubMed  CAS  Google Scholar 

  32. Walton B (1979) Effects of anaesthesia and surgery on immune status. Br J Anaesth 51:37–43

    Article  PubMed  CAS  Google Scholar 

  33. Abramo A, Di Salvo C, Baldi G, Marini E, Anselmino M, Salvetti G, Giunta F, Forfori F (2011) Xenon anesthesia reduces TNFα and IL10 in bariatric patients. Obesity Surg 22:208–212

    Google Scholar 

  34. Rose DK, Cohen MM, Wigglesworth DF (1994) Critical respiratory events in the postanesthesia care unit. Anesthesiology 81:410–418

    Article  PubMed  CAS  Google Scholar 

  35. Schwartz AE (1991) Pharmacokinetics of sufentalnil in obese patients. Anaesth Analg 73:790–793

    CAS  Google Scholar 

  36. Wilton NC, Thomas VL (1986) Single breath induction of anesthesia, using a vital capacity breath of halotane nitrous oxide and oxygen. Anesthesia 41:472–476

    Article  CAS  Google Scholar 

  37. Ruffle JM, Snider MT, Rosenberg JL (1985) Rapid induction of halothane anesthesia in man. Br J Anaesth 57:607–611

    Article  PubMed  CAS  Google Scholar 

  38. Snellen F, Lauwers P, Demeyere R (1990) The use of midazolam versus propofol for short-term sedation following coronary artery bypass grafting. Int Care Med 16:312–316

    Article  CAS  Google Scholar 

  39. Salihoglu Z, Karaca S, Kose Y, Zengin K, Taskin M (2001) Total intravenous anesthesia versus single breath technique and anesthesia maintenance with sevoflurane for bariatric operations. Obes Surg 11:496–501

    Article  PubMed  CAS  Google Scholar 

  40. Juvin P, Vadam C, Malek L, Dupont H, Marmuse JP, Desmonts JM (2000) Isoflurane anesthesia among morbidly obese patients: a prospective, randomized study. Anesth Analg 91:714–719

    Article  PubMed  CAS  Google Scholar 

  41. Wrigley SR, Fairfield JE, Jones RM, Black AE (1991) Induction and recovery characteristics of desflurane in day case patients: a comparison with propofol. Anaesthesia 46:615–622

    Article  PubMed  CAS  Google Scholar 

  42. Servin F, Farinotti R, Haberer JP, Desmonts JM (1993) Propofol infusion for maintenance of anesthesia in morbidly obese patients receiving nitrous oxide: a clinical and pharmacokinetic study. Anesthesiology 78:657–665

    Article  PubMed  CAS  Google Scholar 

  43. Cope DK, Impastato WK, Cohen MV, Downey JM (1997) Volatile anesthetics protect the ischemic rabbit myocardium from infarction. Anesthesiology 86:699–709

    Article  PubMed  CAS  Google Scholar 

  44. Lochner A, Harper IS, Salie R, Genade S, Coetzee AR (1994) Halothane protects the isolated rat myocardium against excessive total intracellular calcium and structural damage during ischemia and reperfusion. Anesth Analg 79:226–233

    Article  PubMed  CAS  Google Scholar 

  45. Alcindor D, Krolikowski JG, Pagel PS, Waltier DC, Keirsten JR (2004) Cycloxygenase-2 mediates ischemic, anesthetic and pharmacologic preconditioning in vivo. Anesthesiology 100:547–554

    Article  PubMed  CAS  Google Scholar 

  46. Kloner RA, Shook T, Przyklenk K, Davis VG, Junio L, Matthews RV (1995) Previous angina alters in-hospital outcome in TIMI 4. A clinical correlate to preconditioning? Circulation 91:37–45

    Article  PubMed  CAS  Google Scholar 

  47. Gray PA, Park GR, Cockshott ID (1992) Propofol metabolism in man during the anhepatic and reperfusion phase of liver transplantation. Xenobiotica 22(105–114):1992

    Google Scholar 

  48. Gaszynski TM, Strzelczyk JM, Gaszynski WP (2004) Post-anesthesia recovery after infusion of propofol with remifentanil or alfentanil or fentanyl in morbidly obese patients. Obes Surg 14(4):498–503

    Article  PubMed  Google Scholar 

  49. Guo TZ, Jiang JY, Buttermann AE et al (1996) Dexmedetomidine injection into the locus ceruleus produces antinociception. Anesthesiology 84(4):873–881

    Article  PubMed  CAS  Google Scholar 

  50. Ishii H, Kohno T, Yamakura T, Ikoma M, Baba H (2008) Action of dexmedetomidine on the substantia gelatinosa neurone of the rat spinal cord. Eur J Neurosi 27(12):3182–3190

    Article  Google Scholar 

  51. Yazbek-Karam VG, Aouad MM (2006) Perioperative uses of dexmedetomidine. Middle East J Anaesthesiol 18(6):1043–1058

    Google Scholar 

  52. Kamibayashi T, Maze M (2000) Clinical uses of alpha2-adrenergic agonists. Anesthesiology 93(5):1345–1349

    Google Scholar 

  53. Grewal A (2011) Dexmedetomidine: new avenues. J Anaesthesiol Clin Pharmacol 27(3):297–302

    Article  PubMed  CAS  Google Scholar 

  54. Ramsay MA, Saha D, Hebeler RF (2006) Tracheal resection in the morbidly obese patient: the role of dexmedetomidine. J Clin Anesth 18(6):452–454

    Article  PubMed  CAS  Google Scholar 

  55. Bakhamees HS, El-Halafawy YM, El-Kerdawy HM, Gouda NM, Altemyatt S (2007) Effects of dexmedetomidine in morbidly obese patients undergoing laparoscopic gastric bypass. Middle East J Anesthesiol 19(3):537–551

    PubMed  Google Scholar 

  56. Hofer RE, Sprung J, Sarr MG, Wedel DJ (2005) Anesthesia for a patient with morbid obesity using dexmedetomidine without narcotics. Can J Anaesth 52(2):176–180

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Rubino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Italia

About this chapter

Cite this chapter

Giunta, F., Salvo, C.D., Rubino, A., Marini, E. (2013). Does Choice of Inhaled Anesthetic Agent Matter?. In: Leykin, Y., Brodsky, J. (eds) Controversies in the Anesthetic Management of the Obese Surgical Patient. Springer, Milano. https://doi.org/10.1007/978-88-470-2634-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2634-6_18

  • Published:

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-2633-9

  • Online ISBN: 978-88-470-2634-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics