Skip to main content

Is Protective Lung Ventilation Safe in Morbidly Obese Patients?

  • Chapter
  • First Online:
Controversies in the Anesthetic Management of the Obese Surgical Patient

Abstract

Mechanical ventilation during general anesthesia is mandatory to maintain physiologic gas-exchange. However, recent evidence suggests that mechanical ventilation might also promote ventilator induced lung injury. During general anesthesia obese patients are characterized by a marked reduction in end-expiratory lung volume (70% compared to awake) and increased atelectasis (20–30% of the lung parenchyma). These changes are associated with a reduction in respiratory system compliance and tidal airway closure, which can occur when the closing volume exceeds the end-expiratory lung volume. The opening and closing of atelectatic lung regions as well as collapsed peripheral airways might induce ventilator induced lung injury, with or without major inflammatory response. Experimental studies, as well as retrospective and prospective clinical studies suggest that the use of large tidal volume (Vt) favors the development of lung injury. Side effects associated with the use of lower Vt, like permissive hypercapnia, seem to be minimal. On the other hand, application of moderate positive end-expiratory pressure (PEEP) levels between 5 and 15 cm H2O may decrease airway closure and/or keep open the lung parenchyma, avoiding the ventilator induced lung injury. Before application of PEEP, to effectively reopen atelectatic areas, a recruitment maneuver (RM) at 35–40 cm H2O of plateau pressure, for at least 5 s should be performed. The clinical effectiveness of this ventilatory approach to prevent postoperative pulmonary complications must be investigated in prospective randomized studies. During general anesthesia in morbidly obese patients we recommend the following: (a) Vt reduction to 6–8 ml/kg of ideal body weight, increasing respiratory rate to maintain physiological PaCO2, while avoiding excessive auto-PEEP, (b) PEEP set between 5 and 15 cm H2O, (c) application of a RM before PEEP, and (d) monitoring of auto-PEEP and airway inspiratory pressures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pelosi P, Croci M, Ravagnan I et al (1998) The effects of body mass on lung volumes, respiratory mechanics, and gas-exchange during general anaesthesia. Anesth Analg 87:645–660

    Google Scholar 

  2. Damia G, Mascheroni D, Croci M et al (1988) Perioperative changes in functional residual capacity in morbidly obese patients. Br J Anaesth 60:574–578

    Article  PubMed  CAS  Google Scholar 

  3. Brismar B, Hedenstierna G, Lundquist H et al (1985) Pulmonary densities during anaesthesia: a proposal of atelectasis. Anesthesiology 62:422–428

    Article  PubMed  CAS  Google Scholar 

  4. Hedenstierna G, Strandberg A, Brismar B et al (1985) Functional residual capacity, thoracoabdominal dimensions, and central blood volume during general anesthesia with muscle paralysis and mechanical ventilation. Anesthesiology 62:247–254

    Article  PubMed  CAS  Google Scholar 

  5. Krayer S, Rehder K, Beck KC et al (1987) Quantification of thoracic volumes by three-dimensional imaging. J Appl Physiol 62:591–598

    Article  PubMed  CAS  Google Scholar 

  6. Reinius H, Jonsson L, Gustafsson S et al (2009) Prevention of atelectasis in morbidly obese patients during general anaesthesia and paralysis: a computerized tomography study. Anesthesiology 111:979–987

    Article  PubMed  Google Scholar 

  7. Pelosi P, Rocco PR (2007) Airway closure: the silent killer of peripheral airways. Crit Care 11(1):114

    Article  PubMed  Google Scholar 

  8. Pelosi P, Croci M, Ravagnan I et al (1996) Total respiratory system, lung and chest wall mechanics in anesthetized-paralyzed morbidly obese patients. Chest 109:144–151

    Article  PubMed  CAS  Google Scholar 

  9. Ferretti A, Giampiccolo P, Cavalli A et al (2001) Expiratory flow limitation and ortopnea in massively obese subjects. Chest 119:1401–1408

    Article  PubMed  CAS  Google Scholar 

  10. Protti A, Cressoni M, Santini A et al (2011) Lung stress and strain during mechanical ventilation: any safe threshold? Am J Respir Crit Care Med 183:1354–1362

    Google Scholar 

  11. Michelet P, D’Journo XB, Roch A et al (2006) Protective ventilation influences systemic inflammation after esophagectomy: a randomized controlled study. Anesthesiology 105:911–919

    Article  PubMed  Google Scholar 

  12. Wolthuis EK, Choi G, Dessing MC et al (2008) Mechanical ventilation with lower tidal volumes and positive end-expiratory pressure prevents pulmonary inflammation in patients without preexisting lung injury. Anesthesiology 108:46–54

    Article  PubMed  Google Scholar 

  13. Tandon S, Batchelor A, Bullock R et al (2001) Peri-operative risk factors for acute lung injury after elective oesophagectomy. Br J Anaesth 86:633–638

    Article  PubMed  CAS  Google Scholar 

  14. Anzueto A, Frutos-Vivar F, Esteban A et al (2011) Influence of body mass index on outcome of the mechanically ventilated patients. Thorax 66(1):66–73

    Article  PubMed  CAS  Google Scholar 

  15. Determann RM, Royakkers A, Wolthuis EK et al (2010) Ventilation with lower tidal volumes as compared with conventional tidal volumes for patients without acute lung injury: a preventive randomized controlled trial. Crit Care 14(1):R1

    Article  PubMed  Google Scholar 

  16. Whalen FX, Gajic O, Thompson GB et al (2006) The effects of the alveolar recruitment maneuver and positive end-expiratory pressure on arterial oxygenation during laparoscopic bariatric surgery. Anesth Analg 102:298–305

    Article  PubMed  Google Scholar 

  17. Tusman G, Bohm SH, Vazquez De Anda GF et al (1999) ‘Alveolar recruitment strategy’ improves arterial oxygenation during general anaesthesia. Br J Anaesth 82(1):8–13

    Article  PubMed  CAS  Google Scholar 

  18. Reinius H, Jonsson L, Gustafsson S et al (2009) Prevention of atelectasis in morbidly obese patients during general anesthesia and paralysis: a computerized tomography study. Anesthesiology 111(5):979–987

    Article  PubMed  Google Scholar 

  19. Talab HF, Zabani IA, Abdelrahman HS et al (2009) Intraoperative ventilatory strategies for prevention of pulmonary atelectasis in obese patients undergoing laparoscopic bariatric surgery. Anesth Analg 109(5):1511–1516

    Article  PubMed  Google Scholar 

  20. Hemmes SN, Severgnini P, Jaber S et al (2011) Rationale and study design of PROVHILO—a worldwide multicenter randomized controlled trial on protective ventilation during general anesthesia for open abdominal surgery. Trials 12:111

    Article  PubMed  Google Scholar 

  21. Almarakbi WA, Fawzi HM, Alhashemi JA (2009) Effects of four intraoperative ventilatory strategies on respiratory compliance and gas exchange during laparoscopic gastric banding in obese patients. Br J Anaesth 102(6):862–868

    Article  PubMed  CAS  Google Scholar 

  22. Chalhoub V, Yazigi A, Sleilaty G et al (2007) Effect of vital capacity manoeuvres on arterial oxygenation in morbidly obese patients undergoing open bariatric surgery. Eur J Anaesthesiol 24(3):283–288

    Article  PubMed  CAS  Google Scholar 

  23. Tusman G, Bohm SH, Melkun F et al (2002) Effects of the alveolar recruitment maneuver and PEEP on arterial oxygenation in anesthetized obese patients. Rev Esp Anaestesiol Reanim 49(4):177–183

    CAS  Google Scholar 

  24. The ARDS Network (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342:1301–1308

    Article  Google Scholar 

  25. Kregenow DA, Rubenfeld GD, Hudson LD et al (2006) Hypercapnic acidosis and mortality in acute lung injury. Crit Care Med 34:1–7

    Article  PubMed  Google Scholar 

  26. Kessler R, Chaouat A, Schinkewitch P et al (2001) The obesity-hypoventilation syndrome revisited: a prospective study of 34 consecutive cases. Chest 120(2):369–376

    Article  PubMed  CAS  Google Scholar 

  27. Ijland MM, Heunks LM, Van der Hoeven JG (2010) Bench-to-bedside review: hypercapnic acidosis in lung injury—from ‘permissive’ to ‘therapeutic’. Crit Care 14(6):237

    Article  PubMed  Google Scholar 

  28. Chuang IC, Yang RC, Chou SH et al (2011) Effect of carbon dioxide inhalation on pulmonary hypertension induced by increased blood flow and hypoxia. Kaohsiung J Med Sci 27(8):336–343

    Article  PubMed  CAS  Google Scholar 

  29. Akca O, Doufas AG, Morioka N et al (2002) Hypercapnia improves tissue oxygenation. Anesthesiology 97:801–806

    Article  PubMed  CAS  Google Scholar 

  30. Gnaegi A, Feihl F, Boulat O et al (2009) Moderate hypercapnia exerts beneficial effects on splanchnic energy metabolism during endotoxemia. Intensive Care Med 35(7):1297–1304

    Article  PubMed  CAS  Google Scholar 

  31. Curley G, Hayes M, Laffey JG (2011) Can ‘permissive’ hypercapnia modulate the severity of sepsis-induced ALI/ARDS? Crit Care 15(2):212

    Article  PubMed  Google Scholar 

  32. Pugin J, Dunn-Siegrist I, Dufour J et al (2008) Cyclic stretch of human lung cells induces an acidifi cation and promotes bacterial growth. Am J Respir Cell Mol Biol 38:362–370

    Article  PubMed  CAS  Google Scholar 

  33. Doerr CH, Gajic O, Berrios JC et al (2005) Hypercapnic acidosis impairs plasma membrane wound resealing in ventilator-injured lungs. Am J Respir Crit Care Med 171:1371–1377

    Article  PubMed  Google Scholar 

  34. Martini WZ, Pusateri AE, Uscilowicz JM et al (2005) Independent contributions of hypothermia and acidosis to coagulopathy in swine. J Trauma 58(5):1002–1009; discussion 1009–1010

    Google Scholar 

  35. Petridis AK, Doukas A, Kienke S et al (2010) The effect of lung-protective permissive hypercapnia in intracerebral pressure in patients with subarachnoid haemorrhage and ARDS. A retrospective study. Acta Neurochir (Wien) 152(12):2143–2145

    Google Scholar 

  36. Chiu AW, Chang LS, Birkett DH et al (1995) The impact of pneumoperitoneum, pneumoretroeritoneum, and gasless laparoscopy on the systemic and renal hemodynamics. J Am Coll Surg 181:397–406

    PubMed  CAS  Google Scholar 

  37. Fried M, Krska Z, Danzig V (2001) Does the laparoscopic approach significantly affect cardiac functions in laparoscopic surgery? Pilot study in non-obese and morbidly obese patients. Obes Surg 11:293–296

    Article  PubMed  CAS  Google Scholar 

  38. Dumont L, Mattys M, Mardirosoff C et al (1997) Hemodynamic changes during laparoscopic gastroplasty in morbidly obese patients. Obes Surg 7(4):326–331

    Article  PubMed  CAS  Google Scholar 

  39. Valenza F, Chevallard G, Fossali T et al (2010) Management of mechanical ventilation during laparoscopic surgery. Best Pract Res Clin Anaesthesiol 24:227–241

    Article  PubMed  Google Scholar 

  40. Lindgren L, Koivusalo AM, Kellokumpu I (1995) Conventional pneumoperitoneum compared with abdominal wall lift for laparoscopic cholecystectomy. Br J Anaesth 75:567–572

    PubMed  CAS  Google Scholar 

  41. Nguyen NT, Anderson J, Fleming NW et al (2004) Effects of pneumoperitoneum on intraoperative respiratory mechanics and gas exchange during laparoscopic gastric bypass. Surg Endosc 18(1):64–71

    Article  PubMed  CAS  Google Scholar 

  42. Pelosi P, Croci M, Ravagnan I et al (1998) The effects of body mass on lung volumes, respiratory mechanics, and gas exchange during general anesthesia. Anaesth Analg 87:654–660

    CAS  Google Scholar 

  43. Valenza F, Vagginelli F, Tiby A et al (2007) Effects of the beach chair position, positive end-expiratory pressure, and pneumoperitoneum on respiratory function in morbidly obese patients during anesthesia and paralysis. Anesthesiology 107:725–732

    Article  PubMed  Google Scholar 

  44. Sprung J, Whalley DG, Falcone T et al (2003) The effect of tidal volume and respiratory rate on oxygenation and respiratory mechanics during laparoscopy in morbidly obese patients. Anesth Analg 97(1):268–274

    Article  PubMed  Google Scholar 

  45. Perilli V, Vitale F, Modesti C et al (2011) Carbon dioxide elimination pattern in morbidly obese patients undergoing laparoscopic surgery. Surg Obes Relat Dis. July 14. [Epub ahead of print]

    Google Scholar 

  46. Futier E, Constantin JM, Pelosi P et al (2010) Intraoperative recruitment maneuver reverses detrimental pneumoperitoneum-induced respiratory effects in healthy weight and obese patients undergoing laparoscopy. Anesthesiology 113(6):1310–1319

    Article  PubMed  Google Scholar 

  47. Whalen FX, Gajic O, Thompson GB et al (2006) The effects of the alveolar recruitment maneuver and positive end-expiratory pressure on arterial oxygenation during laparoscopic bariatric surgery. Anesth Analg 102(1):298–305

    Article  PubMed  Google Scholar 

  48. Almarakbi WA, Fawzi HM, Alhashemi JA (2009) Effects of four intraoperative ventilatory strategies on respiratory compliance and gas exchange during laparoscopic gastric banding in obese patients. Br J Anaesth 102(6):862–868

    Article  PubMed  CAS  Google Scholar 

  49. Talab HF, Zabani IA, Abdelrahman HS et al (2009) Intraoperative ventilatory strategies for prevention of pulmonary atelectasis in obese patients undergoing laparoscopic bariatric surgery. Anesth Analg 109(5):1511–1516

    Article  PubMed  Google Scholar 

  50. Cadi P, Guenoun T, Journois D et al (2008) Pressure-controlled ventilation improves oxygenation during laparoscopic obesity surgery compared with volume-controlled ventilation. Br J Anaesth 100(5):709–716

    Article  PubMed  CAS  Google Scholar 

  51. De Baerdemaeker LE, Van der Herten C, Gillardin JM et al (2008) Comparison of volume-controlled and pressure-controlled ventilation during laparoscopic gastric banding in morbidly obese patients. Obes Surg 18(6):680–685

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Pelosi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Italia

About this chapter

Cite this chapter

Pelosi, P., Brusasco, C., Reinius, H. (2013). Is Protective Lung Ventilation Safe in Morbidly Obese Patients?. In: Leykin, Y., Brodsky, J. (eds) Controversies in the Anesthetic Management of the Obese Surgical Patient. Springer, Milano. https://doi.org/10.1007/978-88-470-2634-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2634-6_17

  • Published:

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-2633-9

  • Online ISBN: 978-88-470-2634-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics