Demyelinating Diseases

  • Kelly K. Koeller
  • Frederik Barkhof


The oligodendrocyte, predominantly found in the white matter, is the cell responsible for myelin production. As a general rule, demyelinating diseases result from either attacks on this cell or failure of these cells to regenerate under normal conditions. As a result, focal or diffuse myelin loss occurs. Multiple sclerosis (MS) is the prototypical white matter disease. Many other diseases may mimic its appearance on imaging studies. Although not an exhaustive list, this review highlights the important imaging manifestations that allow more specific diagnosis of these demyelinating diseases.


Multiple Sclerosis White Matter Progressive Multifocal Leukoencephalopathy Demyelinating Disease Progressive Multifocal Leukoencephalopathy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hauser SL (1994) Multiple sclerosis and other demyelinating disease. In: Isselbacher KJ, Graunwald E, Wilson JD et al (eds) Harrison’s principle of internal medicine. McGraw-Hill, New York, pp 2287–2295Google Scholar
  2. 2.
    Farlow MR, Bonine JM (1993) Clinical and neuropathological features of multiple sclerosi. Neuroradiol Clin North Am 3:213–228Google Scholar
  3. 3.
    Trobe JD (1994) High-dose corticosteroid regimen retards development of multiple sclerosis in optic neuritis treatment trial. Arch Ophthalmol 112:35–36PubMedCrossRefGoogle Scholar
  4. 4.
    Polman CH, Reingold SC, Banwell B et al (2011) Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol 69:292–302Google Scholar
  5. 5.
    McDonald WI, Compston A, Edan G et al (2001) Recommended diagnostic criteria for multiple sclerosis: guidelines from the international panel on the diagnosis of multiple sclerosis. Ann Neurol 50:121–127PubMedCrossRefGoogle Scholar
  6. 6.
    Grossman RI, McGowan JC (1998) Perspective of multiple sclerosis. AJNR Am J Neuroradiol 19:1251–1265PubMedGoogle Scholar
  7. 7.
    Wolinsky JS (2003) The diagnosis of primary progressive multiple sclerosis. J Neurol Sci 206:145–152PubMedCrossRefGoogle Scholar
  8. 8.
    Niebler G, Harris T, Davis T, Roos K (1992) Fulminant multiple sclerosis. AJNR Am J Neuroradiol 13:1547–1551PubMedGoogle Scholar
  9. 9.
    Gharagozloo AM, Poe LB, Collins GH (1994) Antemortem diagnosis of Balo concentric sclerosis: correlative MR imaging and pathologic features. Radiology 191:817–819PubMedGoogle Scholar
  10. 10.
    Matiello M, Jacob A, Wingerchuk D, Weinshenker B (2007) Neuromyelitis optica. Current Opinion Neurology 20:255–260CrossRefGoogle Scholar
  11. 11.
    Jacob A, Matiello M, Wingerchuk D et al (2007) Neuromyelitis optica: changing concepts. J Neuroimmunol 187:126–138PubMedCrossRefGoogle Scholar
  12. 12.
    Lucchinetti CF, Popescu BF, Bunyan RF et al (2011) Inflammatory cortical demyelination in early multiple sclerosis. N Engl J Med 365:2188–2197PubMedCrossRefGoogle Scholar
  13. 13.
    Barkhof F, Scheltens P, Frequin STFM et al (1992) Relapsing-remitting multiple sclerosis: sequential enhanced MR imaging vs clinical findings in determining disease activity. AJR Am J Roentgenol 159:1041–1047PubMedCrossRefGoogle Scholar
  14. 14.
    Nesbit GM, Forbes GS, Scheithauer BW et al (1991) Multiple sclerosis: histopathologic and MR and/or CT correlation in 37 cases at biopsy and three cases at autopsy. Radiology 180:467–474PubMedGoogle Scholar
  15. 15.
    Horowitz AL, Kaplan RD, Grewe G et al (1989) The ovoid lesion: a new MR observation in patients with multiple sclerosis. AJNR Am J Neuroradiol 10:303–305PubMedGoogle Scholar
  16. 16.
    Gean-Marton AD, Vezina LG, Marton KI et al (1991) Abnormal corpus callosum: a sensitive and specific indicator of multiple sclerosis. Radiology 180:215–221PubMedGoogle Scholar
  17. 17.
    Hashemi RH, Bradley WGJ, Chen D-Y et al (1995) Suspected multiple sclerosis: MR imaging with a thin-section fast FLAIR pulse sequence. Radiology 196:505–510PubMedGoogle Scholar
  18. 18.
    Stevenson V, Parker G, Barker G et al (2000) Variations in T1 and T2 relaxation times of normal appearing white matter and lesions in multiple sclerosis. J Neurol Sci 178:81–87PubMedCrossRefGoogle Scholar
  19. 19.
    Dagher AP, Smirniotopoulous JG (1996) Tumefactive demyelinating lesions. Neuroradiology 38:560–565PubMedCrossRefGoogle Scholar
  20. 20.
    Grossman RI, Gonzalez-Scarano F, Atlas SW et al (1986) Multiple sclerosis: gadolinium enhancement in MR imaging. Radiology 161:721–725PubMedGoogle Scholar
  21. 21.
    Simon J, Li D, Traboulsee A et al (2006) Standardized MR imaging protocol for multiple sclerosis: consortium of MS centers consensus guidelines. AJNR Am J Neuroradiol 27:455–461PubMedGoogle Scholar
  22. 22.
    Miller D, Thompson AJ, Filippi M (2003) Magnetic resonance studies of abnormalities in the normal appearing white matter and grey matter in multiple sclerosis. J Neurol 250:1407–1419PubMedCrossRefGoogle Scholar
  23. 23.
    Montalban X, Tintore M, Swanton J et al (2010) MRI criteria for MS in patients with clinically isolated syndromes. Neurology 74:427–434PubMedCrossRefGoogle Scholar
  24. 24.
    Chabas D, Castillo-Trivino T, Mowry EM (2008) Vanishing MS T2-bright lesions before puberty: a distinct MRI phenotype? Neurology 71:1090–1093PubMedCrossRefGoogle Scholar
  25. 25.
    Ge Y, Grossman RI, Udupa JK et al (2000) Brain atrophy in relapsing-remitting multiple sclerosis and secondary progressive multiple sclerosis: longitudinal quantitative analysis. Radiology 214:665–670PubMedGoogle Scholar
  26. 26.
    Dietemann JL, Beigelman C, Rumbach L et al (1988) Multiple sclerosis and corpus callosum atrophy: relationship of MRI findings to clinical data. Neuroradiology 30:478–480PubMedCrossRefGoogle Scholar
  27. 27.
    Mehta RC, Pike GB, Enzmann DR (1996) Measure of magnetization transfer in multiple sclerosis demyelinating plaques, white matter ischemic lesions, and edema. AJNR Am J Neuroradiol 17:1051–1055PubMedGoogle Scholar
  28. 28.
    Grossman RI, Lenkinski RE, Ramer KN et al (1992) MR proton spectroscopy in multiple sclerosis. AJNR Am J Neuroradiol 13:1535–1543PubMedGoogle Scholar
  29. 29.
    Falini A, Calabrese G, Filippi M et al (1998) Benign versus secondary-progressive multiple sclerosis: the potential role of proton MR spectroscopy in defining the nature of disability. AJNR Am J Neuroradiol 19:223–229PubMedGoogle Scholar
  30. 30.
    Monden Y, Yamagata T, Kuroiwa Y et al (2011) A case of ADEM with atypical MRI findings of a centrally-located long spinal cord lesion. Brain Dev [Epub ahead of print]Google Scholar
  31. 31.
    Singh S, Alexander M, Korah IP (1999) Acute disseminated encephalomyelitis: MR imaging features. AJR Am J Roentgenol 173:1101–1107PubMedCrossRefGoogle Scholar
  32. 32.
    Tan CS, Koralnik IJ (2010) Progressive multifocal leukoencephalopathy and other disorders caused by JC virus: clinical features and pathogenesis. Lancet Neurol 9:425–437PubMedCrossRefGoogle Scholar
  33. 33.
    Vennegoor A, Wattjes MP, van Munster ET et al (2011) Indolent course of progressive multifocal leukoencephalopathy during natalizumab treatment in MS. Neurology 76:574–576PubMedCrossRefGoogle Scholar
  34. 34.
    Whiteman M, Post MJD, Berger JR et al (1993) Progressive multifocal leukoencephalopathy in 47 HIV-seropositive patients: neuroimaging with clinical and pathologic correlation. Radiology 187:233–240PubMedGoogle Scholar
  35. 35.
    Thurner M, Post M, Rieger A et al (2001) Initial and followup MR imaging findings in AIDS-related progressive multifocal leukoencephalopathy treated with highly active antiretroviral therapy. AJNR Am J Neuroradiol 22:977–984Google Scholar
  36. 36.
    McArthur JC, Brew BJ, Nath A (2005) Neurological complications of HIV infection. Lancet Neurol 4:543–555PubMedCrossRefGoogle Scholar
  37. 37.
    McArthur JC, Sacktor N, Seines O (1999) Human immunodeficiency virus-associated dementia. Semin Neurol 19:105–111CrossRefGoogle Scholar
  38. 38.
    Menegon P, Sibon I, Pachai C et al (2005) Marchiafava-Bignami disease: diffusion-weighted MRI in corpus callosum and cortical lesions. Neurology 65:475–477PubMedCrossRefGoogle Scholar
  39. 39.
    Tung CS, Wu SL, Tsou JC et al (2010) Marchiafava-Bignami disease with widespread lesions and complete recovery. AJNR Am J Neuroradiol 31:1506–1507PubMedCrossRefGoogle Scholar
  40. 40.
    Izquierdo G, Quesada MA, Chacon J, Martel J (1992) Neuroradiologic abnormalities in Marchiafava-Bignami disease of benign evolution. Eur J Radiol 15:71–74PubMedCrossRefGoogle Scholar
  41. 41.
    Zuccoli G, Santa Cruz D, Bertolini M et al (2009) MR imaging findings in 56 patients with Wernicke encephalopathy: nonalcoholics may differ from alcoholics. AJNR Am J Neuroradiol 30:171–176PubMedCrossRefGoogle Scholar
  42. 42.
    Louis G, Megarbane B, Lavoue S et al (2011) Long-term outcome of patients hospitalized in intensive care units with central or extrapontine myelinolysis. Crit Care Med [Epub ahead of print]Google Scholar
  43. 43.
    Ruzek, KA, Campeau N, Miller G (2004) Early diagnosis of central pontine myelinolysis with diffusion-weighted imaging. AJNR Am J Neuroradiol 25:210–213PubMedGoogle Scholar
  44. 44.
    Miller GM, Baker HL, Okazaki H, Whisnant JP (1988) Central pontine myelinolysis and its imitators: MR findings. Radiology 168:795–802PubMedGoogle Scholar
  45. 45.
    Cha S (2006) Update on brain tumor imaging: from anatomy to physiology. AJNR Am J Neuroradiol 27:475–487PubMedGoogle Scholar
  46. 46.
    Chan Y, Leung S, King AD et al (1999) Late radiation injury to the temporal lobes: morphologic evaluation at MR imaging. Radiology 213:800–807PubMedGoogle Scholar
  47. 47.
    Davis P, Hoffman JJ, Pearl G, Braun I (1986) CT evaluation of effects of cranial radiation therapy in children. AJR Am J Roentgenol 147:587–592PubMedCrossRefGoogle Scholar
  48. 48.
    Wijdicks EF, Campeau N, Sundt T (2008) Reversible unilateral brain edema presenting with major neurologic deficit after valve repair. Ann Thorac Surg 86:634–637PubMedCrossRefGoogle Scholar
  49. 49.
    McKinney AM, Short J, Truwit CL et al (2007) Posterior reversible encephalopathy syndrome: incidence of atypical regions of involvement and imaging findings. AJR Am J Roentgenol 189:904–912PubMedCrossRefGoogle Scholar
  50. 50.
    Covarrubias D, Luetmer P, Campeau N (2002) Posterior reversible encephalopathy syndrome: prognostic utility of quantitative diffusion-weighted MR images. AJNR Am J Neuroradiol 23:1038–1048PubMedGoogle Scholar
  51. 51.
    Post JD, Beauchamp NJ (1998) Reversible intracerebral pathologic entities mediated by vascular autoregulatory dysfunction. Radiographics 18:353–367Google Scholar
  52. 52.
    Yousry TA, Seelos K, Mayer M et al (1999) Characteristic MR lesion pattern and correlation of T1 and T2 lesion volume with neurologic and neuropsychological findings in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). AJNR Am J Neuroradiol 20:91–100PubMedGoogle Scholar
  53. 53.
    van dem Boom R, Lesnick Oberstein S, van den Berg-Huysmans A et al (2006) Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy: MR imaging changes and apolipoportein E genotype. AJNR Am J Neuroradiol 27:359–362PubMedGoogle Scholar
  54. 54.
    Kendall BE (1992) Disorders of lysosomes, peroxisomes, and mitochondria. AJNR Am J Neuroradiol 13:621–653PubMedGoogle Scholar
  55. 55.
    Barkovich AJ, Patay Z (2012) Metabolic, toxic, and inflammatory brain disorders. In: Barkovich AJ, Raybaud C (eds) Pediatric Neuroimaging. Lippincott, Williams & Wilkins, Philadelphia, pp 81–239Google Scholar

Copyright information

© Springer-Verlag Italia 2012

Authors and Affiliations

  • Kelly K. Koeller
    • 1
  • Frederik Barkhof
    • 2
  1. 1.Mayo ClinicRochesterUSA
  2. 2.Department of RadiologyVU University Medical CenterAmsterdamThe Netherlands

Personalised recommendations