Clinical SPECT and PET for Management of Patients with Refractory Epilepsy

  • Koen Van Laere
  • Karolien Goffin
  • Wim Van Paesschen


Epilepsy is a common chronic neurological disorder that is controlled with medication in around 70% of cases. When focal seizures are recurrent despite antiepileptic drugs, resection of the epileptogenic cortex may be considered


Positron Emission Tomography Single Photon Emission Compute Tomography Temporal Lobe Epilepsy Hippocampal Sclerosis Focal Cortical Dysplasia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kwan P, Schachter SC, Brodie MJ (2011) Drug-resistant epilepsy. N Engl J Med 365:919–926PubMedCrossRefGoogle Scholar
  2. 2.
    Duncan JS (2010) Imaging in the surgical treatment of epilepsy. Nat Rev Neurol 6:537–550PubMedCrossRefGoogle Scholar
  3. 3.
    Li LM, Fish DR, Sisodiya SM et al (1995) High resolution magnetic resonance imaging in adults with partial or secondary generalised epilepsy attending a tertiary referral unit. J Neurol Neurosurg Psychiatry 59:384–387PubMedCrossRefGoogle Scholar
  4. 4.
    Rosenow F, Luders H (2001) Presurgical evaluation of epilepsy. Brain 124:1683–1700PubMedCrossRefGoogle Scholar
  5. 5.
    Elger CE, Helmstaedter C, Kurthen M (2004) Chronic epilepsy and cognition. Lancet Neurol 3:663–672PubMedCrossRefGoogle Scholar
  6. 6.
    Gaillard WD, Berl MM, Duke ES et al (2011) fMRI language dominance and FDG-PET hypometabolism. Neurology 76:1322–1329PubMedCrossRefGoogle Scholar
  7. 7.
    Bargallo AN, Setoain PX (2011) Imaging in epilepsy: functional studies. Radiologia [Epub ahead of print]Google Scholar
  8. 8.
    Wiebe S, Blume WT, Girvin JP, Eliasziw M (2001) A randomized, controlled trial of surgery for temporal-lobe epilepsy. N Engl J Med 345:311–318PubMedCrossRefGoogle Scholar
  9. 9.
    Cohen-Gadol AA, Ozduman K, Bronen RA et al (2004) Longterm outcome after epilepsy surgery for focal cortical dysplasia. J Neurosurg 101:55–65PubMedCrossRefGoogle Scholar
  10. 10.
    Ichise M, Golan H, Ballinger JR et al (1997) Regional differences in technetium-99m-ECD clearance on brain SPECT in healthy subjects. J Nucl Med 38:1253–1260PubMedGoogle Scholar
  11. 11.
    Dupont P, Zaknun JJ, Maes A et al (2009) Dynamic perfusion patterns in temporal lobe epilepsy. Eur J Nucl Med Mol Imaging 36:823–830PubMedCrossRefGoogle Scholar
  12. 12.
    Dupont P, Van Paesschen W, Palmini A et al (2006) Ictal perfusion patterns associated with single MRI-visible focal dysplastic lesions: implications for the noninvasive delineation of the epileptogenic zone. Epilepsia 47:1550–1557PubMedCrossRefGoogle Scholar
  13. 13.
    Fukuda M, Masuda H, Honma J et al (2006) Ictal SPECT analyzed by three-dimensional stereotactic surface projection in frontal lobe epilepsy patients. Epilepsy Res 68:95–102PubMedCrossRefGoogle Scholar
  14. 14.
    Lee SK, Lee SY, Yun CH et al (2006) Ictal SPECT in neocortical epilepsies: clinical usefulness and factors affecting the pattern of hyperperfusion. Neuroradiology 48:678–684PubMedCrossRefGoogle Scholar
  15. 15.
    O’Brien TJ, So EL, Mullan BP et al (1998) Subtraction ictal SPECT co-registered to MRI improves clinical usefulness of SPECT in localizing the surgical seizure focus. Neurology 50:445–454PubMedCrossRefGoogle Scholar
  16. 16.
    Matsuda H, Matsuda K, Nakamura F et al (2009) Contribution of subtraction ictal SPECT coregistered to MRI to epilepsy surgery: a multicenter study. Ann Nucl Med 23:283–291PubMedCrossRefGoogle Scholar
  17. 17.
    Ahnlide JA, Rosen I, Linden-Mickelsson TP, Kallen K (2007) Does SISCOM contribute to favorable seizure outcome after epilepsy surgery? Epilepsia 48:579–588PubMedCrossRefGoogle Scholar
  18. 18.
    Baete K, Nuyts J, Van Paesschen W et al (2002) Use of excess height and cluster extent in subtraction SPECT. IEEE transactions on nuclear science 49:2332–2337CrossRefGoogle Scholar
  19. 19.
    Kazemi NJ, Worrell GA, Stead SM et al (2010) Ictal SPECT statistical parametric mapping in temporal lobe epilepsy surgery. Neurology 74:70–76PubMedCrossRefGoogle Scholar
  20. 20.
    Koepp MJ, Diehl B, Woermann FG (2010) Functional neuroimaging in the postictal state. Epilepsy Behav 19:127–130PubMedCrossRefGoogle Scholar
  21. 21.
    Avery RA, Spencer SS, Spanaki MV et al (1999) Effect of injection time on postictal SPET perfusion changes in medically refractory epilepsy. Eur J Nucl Med 26:830–836PubMedCrossRefGoogle Scholar
  22. 22.
    McNally KA, Paige AL, Varghese G et al (2005) Localizing value of ictal-interictal SPECT analyzed by SPM (ISAS). Epilepsia 46:1450–1464PubMedCrossRefGoogle Scholar
  23. 23.
    Drzezga A, Arnold S, Minoshima S et al (1999) 18F-FDG PET studies in patients with extratemporal and temporal epilepsy: evaluation of an observer-independent analysis. J Nucl Med 40:737–746PubMedGoogle Scholar
  24. 24.
    Lin TW, de Aburto MA, Dahlbom M et al (2007) Predicting seizure-free status for temporal lobe epilepsy patients undergoing surgery: prognostic value of quantifying maximal metabolic asymmetry extending over a specified proportion of the temporal lobe. J Nucl Med 48:776–782PubMedCrossRefGoogle Scholar
  25. 25.
    Lee SK, Lee SY, Kim KK et al (2005) Surgical outcome and prognostic factors of cryptogenic neocortical epilepsy. Ann Neurol 58:525–532PubMedCrossRefGoogle Scholar
  26. 26.
    Casse R, Rowe CC, Newton M et al (2002) Positron emission tomography and epilepsy. Mol Imaging Biol 4:338–351PubMedCrossRefGoogle Scholar
  27. 27.
    Kuba R, Tyrlikova I, Chrastina J et al (2011) and postoperative outcomes. Epilepsy Behav 22:537–541PubMedCrossRefGoogle Scholar
  28. 28.
    Blumcke I, Thom M, Aronica E et al (2011) The clinicopathologic spectrum of focal cortical dysplasias: a consensus classification proposed by an ad hoc Task Force of the ILAE Diagnostic Methods Commission. Epilepsia 52:158–174PubMedCrossRefGoogle Scholar
  29. 29.
    Chassoux F, Rodrigo S, Semah F et al (2010) FDG-PET improves surgical outcome in negative MRI Taylor-type focal cortical dysplasias. Neurology 75:2168–2175PubMedCrossRefGoogle Scholar
  30. 30.
    Ollenberger GP, Byrne AJ, Berlangieri SU et al (2005) Assessment of the role of FDG PET in the diagnosis and management of children with refractory epilepsy. Eur J Nucl Med Mol Imaging 32:1311–1316PubMedCrossRefGoogle Scholar
  31. 31.
    Choi JY, Kim SJ, Hong SB et al (2003) Extratemporal hypometabolism on FDG PET in temporal lobe epilepsy as a predictor of seizure outcome after temporal lobectomy. Eur J Nucl Med Mol Imaging 30:581–587PubMedCrossRefGoogle Scholar
  32. 32.
    Struck AF, Hall LT, Floberg JM et al (2011) Surgical decision making in temporal lobe epilepsy: a comparison of [(18)F]FDG-PET, MRI, and EEG. Epilepsy Behav 22:293–297PubMedCrossRefGoogle Scholar
  33. 33.
    O’Brien TJ, Miles K, Ware R et al (2008) The cost-effective use of 18F-FDG PET in the presurgical evaluation of medically refractory focal epilepsy. J Nucl Med 49:931–937PubMedCrossRefGoogle Scholar
  34. 34.
    Blumenfeld H, Varghese GI, Purcaro MJ et al (2009) Cortical and subcortical networks in human secondarily generalized tonic-clonic seizures. Brain 132:999–1012PubMedCrossRefGoogle Scholar
  35. 35.
    Kumar A, Chugani HT (2011) Delineating cortical networks underlying epileptic encephalopathy and cognitive impairment with PET: a perspective. J Nucl Med 52:8–9PubMedCrossRefGoogle Scholar
  36. 36.
    Laufs H, Richardson MP, Salek-Haddadi A et al (2011) Converging PET and fMRI evidence for a common area involved in human focal epilepsies. Neurology 77:904–910PubMedCrossRefGoogle Scholar
  37. 37.
    Akman CI, Ichise M, Olsavsky A et al (2010) Epilepsy duration impacts on brain glucose metabolism in temporal lobe epilepsy: results of voxel-based mapping. Epilepsy Behav 17:373–380PubMedCrossRefGoogle Scholar
  38. 38.
    Nelissen N, Van Paesschen W, Baete K et al (2006) Correlations of interictal FDG-PET metabolism and ictal SPECT perfusion changes in human temporal lobe epilepsy with hippocampal sclerosis. Neuroimage 32:684–695PubMedCrossRefGoogle Scholar
  39. 39.
    Salzberg M, Taher T, Davie M et al (2006) Depression in temporal lobe epilepsy surgery patients: an FDG-PET study. Epilepsia 47:2125–2130PubMedCrossRefGoogle Scholar
  40. 40.
    Benedek K, Juhasz C, Chugani DC et al (2006) Longitudinal changes in cortical glucose hypometabolism in children with intractable epilepsy. J Child Neurol 21:26–31PubMedCrossRefGoogle Scholar
  41. 41.
    Takaya S, Mikuni N, Mitsueda T et al (2009) Improved cerebral function in mesial temporal lobe epilepsy after subtemporal amygdalohippocampectomy. Brain 132:185–194PubMedCrossRefGoogle Scholar
  42. 42.
    Trotta N, Goldman S, Legros B et al (2011) Metabolic evidence for episodic memory plasticity in the nonepileptic temporal lobe of patients with mesial temporal epilepsy. Epilepsia 52:2003–2012PubMedCrossRefGoogle Scholar
  43. 43.
    Baete K, Nuyts J, Van PW et al (2004) Anatomical-based FDG-PET reconstruction for the detection of hypo-metabolic regions in epilepsy. IEEE Trans Med Imaging 23:510–519PubMedCrossRefGoogle Scholar
  44. 44.
    Vunckx K, Atre A, Baete K et al (2011) Evaluation of three MRI-based anatomical priors for quantitative PET brain imaging. IEEE Trans Med Imaging [Epub ahead of print]Google Scholar
  45. 45.
    Goffin K, Van Paesschen W, Dupont P et al (2010) Anatomybased reconstruction of FDG-PET images with implicit partial volume correction improves detection of hypometabolic regions in patients with epilepsy due to focal cortical dysplasia diagnosed on MRI. Eur J Nucl Med Mol Imaging 37:1148–1155PubMedCrossRefGoogle Scholar
  46. 46.
    Kato H, Shimosegawa E, Oku N et al (2008) MRI-based correction for partial-volume effect improves detectability of intractable epileptogenic foci on 123I-iomazenil brain SPECT images. J Nucl Med 49:383–389PubMedCrossRefGoogle Scholar
  47. 47.
    Koepp MJ, Woermann FG (2005) Imaging structure and function in refractory focal epilepsy. Lancet Neurol 4:42–53PubMedCrossRefGoogle Scholar
  48. 48.
    Kasper BS, Struffert T, Kasper EM et al (2011) 18Fluoroethyl-L-tyrosine-PET in long-term epilepsy associated glioneuronal tumors. Epilepsia 52:35–44PubMedCrossRefGoogle Scholar
  49. 49.
    Rosenberg DS, Demarquay G, Jouvet A et al (2005) [11C]-Methionine PET: dysembryoplastic neuroepithelial tumours compared with other epileptogenic brain neoplasms. J Neurol Neurosurg Psychiatry 76:1686–1692PubMedCrossRefGoogle Scholar
  50. 50.
    Kagawa K, Chugani DC, Asano E et al (2005) Epilepsy surgery outcome in children with tuberous sclerosis complex evaluated with alpha-[11C]methyl-L-tryptophan positron emission tomography (PET). J Child Neurol 20:429–438PubMedCrossRefGoogle Scholar
  51. 51.
    Chugani HT, Kumar A, Kupsky W et al (2011) Clinical and histopathologic correlates of 11C-alpha-methyl-L-tryptophan (AMT) PET abnormalities in children with intractable epilepsy. Epilepsia 52:1692–1698PubMedCrossRefGoogle Scholar
  52. 52.
    Aboian MS, Wong-Kisiel LC, Rank M et al (2011) SISCOM in children with tuberous sclerosis complex-related epilepsy. Pediatr Neurol 45:83–88PubMedCrossRefGoogle Scholar
  53. 53.
    Wu JY, Salamon N, Kirsch HE et al (2010) Noninvasive testing, early surgery, and seizure freedom in tuberous sclerosis complex. Neurology 74:392–398PubMedCrossRefGoogle Scholar
  54. 54.
    Hammers A, Koepp MJ, Brooks DJ, Duncan JS (2005) Periventricular white matter flumazenil binding and postoperative outcome in hippocampal sclerosis. Epilepsia 46:944–948PubMedCrossRefGoogle Scholar
  55. 55.
    Mayberg HS, Sadzot B, Meltzer CC et al (1991) Quantification of mu and non-mu opiate receptors in temporal lobe epilepsy using positron emission tomography. Ann Neurol 30:3–11PubMedCrossRefGoogle Scholar
  56. 56.
    Picard F, Bruel D, Servent D et al (2006) Alteration of the in vivo nicotinic receptor density in ADNFLE patients: a PET study. Brain 129:2047–2060PubMedCrossRefGoogle Scholar
  57. 57.
    Giovacchini G, Toczek MT, Bonwetsch R et al (2005) 5-HT 1A receptors are reduced in temporal lobe epilepsy after partial-volume correction. J Nucl Med 46:1128–1135PubMedGoogle Scholar
  58. 58.
    Theodore WH, Wiggs EA, Martinez AR et al (2001) Serotonin 1A receptors, depression, and memory in temporal lobe epilepsy. Epilepsia 53:129–133CrossRefGoogle Scholar
  59. 59.
    Goffin K, Van Paesschen W, Van Laere K (2011) In vivo activation of endocannabinoid system in temporal lobe epilepsy with hippocampal sclerosis. Brain 134:1033–1040PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2012

Authors and Affiliations

  • Koen Van Laere
    • 1
  • Karolien Goffin
    • 1
  • Wim Van Paesschen
    • 2
  1. 1.Division of Nuclear MedicineUniversity Hospital LeuvenLeuvenBelgium
  2. 2.Department of NeurologyEpilepsy Unit, University Hospital LeuvenLeuvenBelgium

Personalised recommendations