PET Imaging of Dementia

  • Osama Sabri
  • Solveig Tiepolt
  • Swen Hesse
  • Henryk Barthel


In the medical dictionary, dementia is defined in the following way: “Dementia is a loss of mental ability severe enough to interfere with normal activities of daily living, lasting more than six months, not present since birth, and not associated with a loss or alteration of consciousness”. Dementia is usually caused by neurodegenerative diseases, e.g., Alzheimer’s disease (AD), frontotemporal lobar degeneration (FTLD), dementia with Lewy bodies (DLB) or vascular lesions. However, some psychiatric syndromes, e.g., severe major depression (MD) and severe metabolic abnormalities, e.g., serious hypothyroidism, can mimic dementia. Specific organic disorders, e.g., multiple sclerosis, AIDS, prolonged abuse of alcohol or other drugs, may also cause dementias. In the daily routine of a positron-emission tomography (PET) center, patients with dementia or questionable dementia caused by neurodegenerative disorders have been examined.


Mild Cognitive Impairment Multiple System Atrophy Dementia With Lewy Body Progressive Supranuclear Palsy Frontotemporal Dementia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Herholz K, Carter SF, Jones M (2007) Positron emission tomography imaging in dementia. Br J Radiol 80:S160–167PubMedCrossRefGoogle Scholar
  2. 2.
    Drzezga A (2010) Amyloid-plaque imaging in early and differential diagnosis of dementia. Ann Nucl Med 24:55–66PubMedCrossRefGoogle Scholar
  3. 3.
    Lesné S, Koh MT, Kotilinek L et al (2006) A specific amyloidbeta protein assembly in the brain impairs memory. Nature 440:352–357PubMedCrossRefGoogle Scholar
  4. 4.
    Walsh DM, Selkoe DJ (2004) Deciphering the Molecular Basis of Memory Failure in Alzheimer’s Disease. Neuron 44:181–193PubMedCrossRefGoogle Scholar
  5. 5.
    Bao F, Wicklund L, Lacor PN et al (2011) Different β-amyloid oligomer assemblies in Alzheimer brains correlate with age of disease onset and impaired cholinergic activity. Neurobiol Aging [Epub ahead of print]Google Scholar
  6. 6.
    Drzezga A (2008) Basic pathologies of neurodegenerative dementias and their relevance for state-of-the-art molecular imaging studies. Eur J Nucl Med Mol Imaging 35:S4–S11PubMedCrossRefGoogle Scholar
  7. 7.
    Bartus RT, Dean RL, Beer B et al (1982) The cholinergic hypothesis of geriatric memory dysfunction. Science 217:408–414PubMedCrossRefGoogle Scholar
  8. 8.
    Nordberg A, Hartvig P, Lilja A et al (1990) Decreased uptake and binding of 11C-nicotine in brain of Alzheimer patients as visualized by positron emission tomography. J Neural Transm Park Dis Dement 2:215–224CrossRefGoogle Scholar
  9. 9.
    Nyback H, Halldin C, Ahlin A et al (1994) PET studies of the uptake of (S)-[C-11]nicotine and (R)-[C-11]nicotine in the human brain — difficulties in visualizing specific receptor-binding in-vivo. Psychopharmacology 115:31–36PubMedCrossRefGoogle Scholar
  10. 10.
    Sabri O, Kendziorra K, Wolf H et al (2008) Acetylcholine receptors in dementia and mild cognitive impairment. Eur J Nucl Med Mol Imaging 35:S30–S45PubMedCrossRefGoogle Scholar
  11. 11.
    Kendziorra K, Wolf H, Meyer PM et al (2011) Decreased cerebral α4β2* nicotinic acetylcholine receptor availability in patients with mild cognitive impairment and Alzheimer’s disease assessed with positron emission tomography. Eur J Nucl Med Mol Imaging 38:515–525PubMedCrossRefGoogle Scholar
  12. 12.
    Sabri O, Wilke S, Graef S et al (2011) Cerebral alpha4beta2 nicotinic acetylcholine receptors (nAChRs) in early Alzheimer disease (AD) assessed with the new PET tracer (-)-[18F]-norchloro-fluoro-homoepibatidine (NCFHEB). J Nucl Med 52:1267Google Scholar
  13. 13.
    Berti V, Pupi A, Mosconi L (2011) PET/CT in diagnosis of dementia. Ann NY Acad Sci 1228:81–92PubMedCrossRefGoogle Scholar
  14. 14.
    Small GW, Kepe V, Ercoli LM et al (2006) PET of brain amyloid and tau in mild cognitive impairment. N Engl J Med 355:2652–2663PubMedCrossRefGoogle Scholar
  15. 15.
    Barthel H, Gertz HJ, Dresel S et al, for the Florbetaben Study Group (2011) Cerebral amyloid-β PET with florbetaben (18F) in patients with Alzheimer’s disease and healthy controls: a multicentre phase 2 diagnostic study. Lancet Neurol 10:424–435Google Scholar
  16. 16.
    Vandenberghe R, Van Laere K, Ivanoiu A et al (2010) 18Fflutemetamol amyloid imaging in Alzheimer disease and mild cognitive impairment: a phase 2 trial. Ann Neurol. 68(3):319–329PubMedCrossRefGoogle Scholar
  17. 17.
    Cirrito JR, Disabato BM, Restivo JL et al (2011) Serotonin signaling is associated with lower amyloid-ß levels and plaques in transgenic mice and humans. Proc Natl Acad Sci U S A 108:14968–14973PubMedCrossRefGoogle Scholar
  18. 18.
    Schroeter ML, Raczka K, Neumann J et al (2007) Towards a nosology for frontotemporal lobar degenerations — a metaanalysis involving 267 subjects. Neuroimage 36:497–510PubMedCrossRefGoogle Scholar
  19. 19.
    Franceschi M, Anchisi D, Pelati O et al (2005) Glucose metabolism and serotonin receptors in the frontotemporal lobe degeneration. Ann Neurol 57:216–225PubMedCrossRefGoogle Scholar
  20. 20.
    Edison P, Rowe CC, Rinne JO et al (2008) Amyloid load in Parkinson’s disease dementia and Lewy body dementia measured with [11C]PIB positron emission tomography. J Neurol Neurosurg Psychiatry 79:1331–1338PubMedCrossRefGoogle Scholar
  21. 21.
    Yong SW, Yoon JK, An YS, Lee PH (2007) A comparison of cerebral glucose metabolism in Parkinson’s disease, Parkinson’s disease dementia and dementia with Lewy bodies. Eur J Neurol 14:1357–1362PubMedCrossRefGoogle Scholar
  22. 22.
    O’Brien JT, Colloby SJ, Pakrasi S et al (2008) Nicotinic alpha4beta2 receptor binding in dementia with Lewy bodies using 123I-5IA-85380 SPECT demonstrates a link between occipital changes and visual hallucinations. Neuroimage 40:1056–1063PubMedCrossRefGoogle Scholar
  23. 23.
    Brown RG, Lacomblez L, Landwehrmeyer BG et al (2010) Cognitive impairment in patients with multiple system atrophy and progressive supranuclear palsy. Brain 133:2382–2393PubMedCrossRefGoogle Scholar
  24. 24.
    Teune LK, Bartels AL, de Jong BM et al (2010) Typical cerebral metabolic patterns in neurodegenerative brain diseases. Mov Disord 25:2395–2404PubMedCrossRefGoogle Scholar
  25. 25.
    Eckert T, Tang C, Ma Y et al (2008) Abnormal metabolic networks in atypical parkinsonism. Mov Disord 23:727–733PubMedCrossRefGoogle Scholar
  26. 26.
    Mahapatra RK, Edwards MJ, Schott JM et al (2004) Corticobasal degeneration. Lancet Neurol 3:736–743PubMedCrossRefGoogle Scholar
  27. 27.
    Boeve BF, Lang AE, Litvan I (2003) Corticobasal degeneration and its relationship to progressive supranuclear palsy and frontotemporal dementia. Ann Neurol 54:S15–S19PubMedCrossRefGoogle Scholar
  28. 28.
    Eckert T, Barnes A, Dhawan V et al (2005) FDG PET in the differential diagnosis of parkinsonian disorders. Neuroimage 26:912–921PubMedCrossRefGoogle Scholar
  29. 29.
    Ketter TA, George MS, Kimbrell TA et al (1996) Functional brain imaging, limbic function and affective disorders. Neuroscientist 2:55–65Google Scholar
  30. 30.
    Meyer JH (2008) Applying neuroimaging ligands to study major depressive disorder. Semin Nucl Med 38:287–304PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2012

Authors and Affiliations

  • Osama Sabri
    • 1
  • Solveig Tiepolt
    • 1
  • Swen Hesse
    • 1
  • Henryk Barthel
    • 1
  1. 1.Department of Nuclear MedicineUniversity of LeipzigSaxonyGermany

Personalised recommendations