Nuclear Medicine Imaging of Brain Tumors


Although intracerebral tumors were the first type to be investigated clinically with positron emission tomography (PET) using the most important clinical tracer, [18F]-fluorodeoxyglucose (FDG), the implementation into clinical practice has been long surpassed by the use of whole-body PET scanning in general oncology [1]. This embracing of whole-body PET scanning has meant a general technical upgrade in many hospitals, creating the opportunity to study many other indications as well. For brain tumors, the focus here will thus be on the use of FDG and amino acid/amino acid analogue tracers, as these are predicted to play the largest clinical roles in the years to come.


Positron Emission Tomography Nuclear Medicine Image Positron Emission Tomography Brain Positron Emission Tomography Brain Imaging Childhood Central Nervous System Tumor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Di Chiro G, DeLaPaz RL, Brooks RA et al (1982) Glucose utilization of cerebral gliomas measured by [18F] fluorodeoxy — glucose and positron emission tomography Neurology 32:1323–1329PubMedCrossRefGoogle Scholar
  2. 2.
    Varrone A, Asenbaum S, Vander Borght T et al (2009) EANM procedure guidelines for PET brain imaging using [(18)F]FDG, version 2. Eur J Nucl Med Mol Imaging 36:2103–2110PubMedCrossRefGoogle Scholar
  3. 3.
    Spence AM, Muzi M, Mankoff DA et al (2004) 18F-FDG PET of gliomas at delayed intervals: improved distinction between tumor and normal gray matter J Nucl Med 45:1653–1659PubMedGoogle Scholar
  4. 4.
    Fulham MJ, Brunetti A, Aloj L et al (1995) Decreased cerebral glucose metabolism in patients with brain tumors: an effect of corticosteroids J. Neurosurg. 83:657–664CrossRefGoogle Scholar
  5. 5.
    Ishizu K, Sadato N, Yonekura Y et al (1994) Enhanced detection of brain tumors by [18F]fluorodeoxyglucose PET with glucose loading. J Comput Assist Tomogr 18:12–15PubMedCrossRefGoogle Scholar
  6. 6.
    Bergstrom M, Collins VP, Ehrin E et al (1983) Discrepancies in brain tumor extent as shown by computed tomography and positron emission tomography using [68Ga]EDTA, [11C]glucose, and [11C]methionine. J Comput Assist Tomogr 7:1062–1066PubMedCrossRefGoogle Scholar
  7. 7.
    Popperl G, Kreth FW, Herms J et al (2006) Analysis of 18FFET PET for grading of recurrent gliomas: is evaluation of uptake kinetics superior to standard methods? J Nucl Med 47:393–403PubMedGoogle Scholar
  8. 8.
    Kaim AH, Weber B, Kurrer MO et al (2002) (18)F-FDG and (18)F-FET uptake in experimental soft tissue infection. Eur J Nucl Med Mol Imaging 29:648–654PubMedCrossRefGoogle Scholar
  9. 9.
    Kracht LW, Miletic H, Busch S et al (2004) Delineation of brain tumor extent with [11C]L-methionine positron emission tomography: local comparison with stereotactic histopathology. Clin Cancer Res 10:7163–7170PubMedCrossRefGoogle Scholar
  10. 10.
    Salber D, Stoffels G, Oros-Peusquens AM et al (2010) Comparison of O-(2-18F-fluoroethyl)-L-tyrosine and L-3H-methionine uptake in cerebral hematomas. J Nucl Med 51:790–797PubMedCrossRefGoogle Scholar
  11. 11.
    Salber D, Stoffels G, Pauleit D et al (2006) Differential uptake of [18F]FET and [3H]l-methionine in focal cortical ischemia. Nucl Med Biol 33:1029–1035PubMedCrossRefGoogle Scholar
  12. 12.
    Stummer W, van den Bent MJ, Westphal M (2011) Cytoreductive surgery of glioblastoma as the key to successful adjuvant therapies: new arguments in an old discussion. Acta Neurochir (Wien) 153:1211–1218CrossRefGoogle Scholar
  13. 13.
    Scott JN, Brasher PM, Sevick RJ et al (2002) How often are nonenhancing supratentorial gliomas malignant? A population study. Neurology 59:947–949PubMedCrossRefGoogle Scholar
  14. 14.
    Borgwardt L, Hojgaard L, Carstensen H et al (2005) Increased fluorine-18 2-fluoro-2-deoxy-D-glucose (FDG) uptake in childhood CNS tumors is correlated with malignancy grade: a study with FDG positron emission tomography/magnetic resonance imaging coregistration and image fusion. J Clin Oncol 23:3030–3037PubMedCrossRefGoogle Scholar
  15. 15.
    Padma MV, Jacobs M, Sequeira P et al (2004) Functional imaging in Lhermitte-Duclose disease. Mol Imaging Biol 6:319–323PubMedCrossRefGoogle Scholar
  16. 16.
    Langen KJ, Hamacher K, Weckesser M et al (2006) O-(2-[18F]fluoroethyl)-L-tyrosine: uptake mechanisms and clinical applications. Nucl Med Biol 33:287–294PubMedCrossRefGoogle Scholar
  17. 17.
    Floeth FW, Pauleit D, Sabel M et al (2007) Prognostic value of O-(2-18F-fluoroethyl)-L-tyrosine PET and MRI in low-grade glioma. J Nucl Med 48:519–527PubMedCrossRefGoogle Scholar
  18. 18.
    Popperl G, Kreth FW, Mehrkens JH et al (2007) FET PET for the evaluation of untreated gliomas: correlation of FET uptake and uptake kinetics with tumour grading. Eur J Nucl Med Mol Imaging 34:1933–1942PubMedCrossRefGoogle Scholar
  19. 19.
    Calcagni ML, Galli G, Giordano A et al (2011) Dynamic O-(2-[18F]fluoroethyl)-L-tyrosine (F-18 FET) PET for glioma grading: assessment of individual probability of malignancy. Clin Nucl Med 36:841–847PubMedCrossRefGoogle Scholar
  20. 20.
    Pauleit D, Floeth F, Hamacher K et al (2005) O-(2-[18F]fluoroethyl)-L-tyrosine PET combined with MRI improves the diagnostic assessment of cerebral gliomas. Brain 128:678–687PubMedCrossRefGoogle Scholar
  21. 21.
    Pirotte B, Goldman S, Massager N et al (2004) Combined use of 18F-fluorodeoxyglucose and 11C-methionine in 45 positron emission tomography-guided stereotactic brain biopsies. J Neurosurg 101:476–483PubMedCrossRefGoogle Scholar
  22. 22.
    Mehrkens JH, Popperl G, Rachinger W et al (2008) The positive predictive value of O-(2-[18F]fluoroethyl)-L-tyrosine (FET) PET in the diagnosis of a glioma recurrence after multimodal treatment. J Neurooncol 88:27–35PubMedCrossRefGoogle Scholar
  23. 23.
    Popperl G, Gotz C, Rachinger W et al (2006) Serial O-(2-[18)F]fluoroethyl)-L:-tyrosine PET for monitoring the effects of intracavitary radioimmunotherapy in patients with malignant glioma. Eur J Nucl Med Mol Imaging 33:792–800PubMedCrossRefGoogle Scholar
  24. 24.
    Popperl G, Gotz C, Rachinger W et al (2004) Value of O-(2-[18F]fluoroethyl)-L-tyrosine PET for the diagnosis of recurrent glioma. Eur J Nucl Med Mol Imaging 31:1464–1470PubMedCrossRefGoogle Scholar
  25. 25.
    Langleben DD, Segall GM (2000) PET in differentiation of recurrent brain tumor from radiation injury. J Nucl Med 41:1861–1867PubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia 2012

Authors and Affiliations

  • Ian Law
    • 1
  1. 1.Department of Clinical Physiology, Nuclear Medicine and PETRigshospitaletCopenhagenDenmark

Personalised recommendations