Skip to main content
  • 1933 Accesses

Abstract

Although intracerebral tumors were the first type to be investigated clinically with positron emission tomography (PET) using the most important clinical tracer, [18F]-fluorodeoxyglucose (FDG), the implementation into clinical practice has been long surpassed by the use of whole-body PET scanning in general oncology [1]. This embracing of whole-body PET scanning has meant a general technical upgrade in many hospitals, creating the opportunity to study many other indications as well. For brain tumors, the focus here will thus be on the use of FDG and amino acid/amino acid analogue tracers, as these are predicted to play the largest clinical roles in the years to come.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Di Chiro G, DeLaPaz RL, Brooks RA et al (1982) Glucose utilization of cerebral gliomas measured by [18F] fluorodeoxy — glucose and positron emission tomography Neurology 32:1323–1329

    Article  PubMed  Google Scholar 

  2. Varrone A, Asenbaum S, Vander Borght T et al (2009) EANM procedure guidelines for PET brain imaging using [(18)F]FDG, version 2. Eur J Nucl Med Mol Imaging 36:2103–2110

    Article  PubMed  Google Scholar 

  3. Spence AM, Muzi M, Mankoff DA et al (2004) 18F-FDG PET of gliomas at delayed intervals: improved distinction between tumor and normal gray matter J Nucl Med 45:1653–1659

    PubMed  Google Scholar 

  4. Fulham MJ, Brunetti A, Aloj L et al (1995) Decreased cerebral glucose metabolism in patients with brain tumors: an effect of corticosteroids J. Neurosurg. 83:657–664

    Article  CAS  Google Scholar 

  5. Ishizu K, Sadato N, Yonekura Y et al (1994) Enhanced detection of brain tumors by [18F]fluorodeoxyglucose PET with glucose loading. J Comput Assist Tomogr 18:12–15

    Article  PubMed  CAS  Google Scholar 

  6. Bergstrom M, Collins VP, Ehrin E et al (1983) Discrepancies in brain tumor extent as shown by computed tomography and positron emission tomography using [68Ga]EDTA, [11C]glucose, and [11C]methionine. J Comput Assist Tomogr 7:1062–1066

    Article  PubMed  CAS  Google Scholar 

  7. Popperl G, Kreth FW, Herms J et al (2006) Analysis of 18FFET PET for grading of recurrent gliomas: is evaluation of uptake kinetics superior to standard methods? J Nucl Med 47:393–403

    PubMed  Google Scholar 

  8. Kaim AH, Weber B, Kurrer MO et al (2002) (18)F-FDG and (18)F-FET uptake in experimental soft tissue infection. Eur J Nucl Med Mol Imaging 29:648–654

    Article  PubMed  CAS  Google Scholar 

  9. Kracht LW, Miletic H, Busch S et al (2004) Delineation of brain tumor extent with [11C]L-methionine positron emission tomography: local comparison with stereotactic histopathology. Clin Cancer Res 10:7163–7170

    Article  PubMed  CAS  Google Scholar 

  10. Salber D, Stoffels G, Oros-Peusquens AM et al (2010) Comparison of O-(2-18F-fluoroethyl)-L-tyrosine and L-3H-methionine uptake in cerebral hematomas. J Nucl Med 51:790–797

    Article  PubMed  Google Scholar 

  11. Salber D, Stoffels G, Pauleit D et al (2006) Differential uptake of [18F]FET and [3H]l-methionine in focal cortical ischemia. Nucl Med Biol 33:1029–1035

    Article  PubMed  CAS  Google Scholar 

  12. Stummer W, van den Bent MJ, Westphal M (2011) Cytoreductive surgery of glioblastoma as the key to successful adjuvant therapies: new arguments in an old discussion. Acta Neurochir (Wien) 153:1211–1218

    Article  Google Scholar 

  13. Scott JN, Brasher PM, Sevick RJ et al (2002) How often are nonenhancing supratentorial gliomas malignant? A population study. Neurology 59:947–949

    Article  PubMed  CAS  Google Scholar 

  14. Borgwardt L, Hojgaard L, Carstensen H et al (2005) Increased fluorine-18 2-fluoro-2-deoxy-D-glucose (FDG) uptake in childhood CNS tumors is correlated with malignancy grade: a study with FDG positron emission tomography/magnetic resonance imaging coregistration and image fusion. J Clin Oncol 23:3030–3037

    Article  PubMed  Google Scholar 

  15. Padma MV, Jacobs M, Sequeira P et al (2004) Functional imaging in Lhermitte-Duclose disease. Mol Imaging Biol 6:319–323

    Article  PubMed  Google Scholar 

  16. Langen KJ, Hamacher K, Weckesser M et al (2006) O-(2-[18F]fluoroethyl)-L-tyrosine: uptake mechanisms and clinical applications. Nucl Med Biol 33:287–294

    Article  PubMed  CAS  Google Scholar 

  17. Floeth FW, Pauleit D, Sabel M et al (2007) Prognostic value of O-(2-18F-fluoroethyl)-L-tyrosine PET and MRI in low-grade glioma. J Nucl Med 48:519–527

    Article  PubMed  CAS  Google Scholar 

  18. Popperl G, Kreth FW, Mehrkens JH et al (2007) FET PET for the evaluation of untreated gliomas: correlation of FET uptake and uptake kinetics with tumour grading. Eur J Nucl Med Mol Imaging 34:1933–1942

    Article  PubMed  Google Scholar 

  19. Calcagni ML, Galli G, Giordano A et al (2011) Dynamic O-(2-[18F]fluoroethyl)-L-tyrosine (F-18 FET) PET for glioma grading: assessment of individual probability of malignancy. Clin Nucl Med 36:841–847

    Article  PubMed  Google Scholar 

  20. Pauleit D, Floeth F, Hamacher K et al (2005) O-(2-[18F]fluoroethyl)-L-tyrosine PET combined with MRI improves the diagnostic assessment of cerebral gliomas. Brain 128:678–687

    Article  PubMed  Google Scholar 

  21. Pirotte B, Goldman S, Massager N et al (2004) Combined use of 18F-fluorodeoxyglucose and 11C-methionine in 45 positron emission tomography-guided stereotactic brain biopsies. J Neurosurg 101:476–483

    Article  PubMed  CAS  Google Scholar 

  22. Mehrkens JH, Popperl G, Rachinger W et al (2008) The positive predictive value of O-(2-[18F]fluoroethyl)-L-tyrosine (FET) PET in the diagnosis of a glioma recurrence after multimodal treatment. J Neurooncol 88:27–35

    Article  PubMed  CAS  Google Scholar 

  23. Popperl G, Gotz C, Rachinger W et al (2006) Serial O-(2-[18)F]fluoroethyl)-L:-tyrosine PET for monitoring the effects of intracavitary radioimmunotherapy in patients with malignant glioma. Eur J Nucl Med Mol Imaging 33:792–800

    Article  PubMed  Google Scholar 

  24. Popperl G, Gotz C, Rachinger W et al (2004) Value of O-(2-[18F]fluoroethyl)-L-tyrosine PET for the diagnosis of recurrent glioma. Eur J Nucl Med Mol Imaging 31:1464–1470

    Article  PubMed  Google Scholar 

  25. Langleben DD, Segall GM (2000) PET in differentiation of recurrent brain tumor from radiation injury. J Nucl Med 41:1861–1867

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Italia

About this paper

Cite this paper

Law, I. (2012). Nuclear Medicine Imaging of Brain Tumors. In: Hodler, J., von Schulthess, G.K., Zollikofer, C.L. (eds) Diseases of the Brain, Head & Neck, Spine 2012–2015. Springer, Milano. https://doi.org/10.1007/978-88-470-2628-5_32

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2628-5_32

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-2627-8

  • Online ISBN: 978-88-470-2628-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics