Skip to main content

Degenerative Disc Disease of the Spine: Anatomic and Imaging Considerations

  • Conference paper
Diseases of the Brain, Head & Neck, Spine 2012–2015

Abstract

Traditionally, disc degeneration has been linked to mechanical loading. The importance of mechanical factors has been emphasized by experiments on cadaver spines with both severe single-event and relentless loading [1–5]. Disc failure is more common in areas where there are the heaviest mechanical stresses, such as the lower lumbar region. It has been suggested that mechanical factors produce endplate damage, the antecedent to disc degeneration [6]. The disc is metabolically active, and the metabolism is dependent on diffusion of fluid either from the marrow of the vertebral bodies across the subchondral bone, the cartilaginous endplate, or through the annulus fibrosus from the surrounding blood vessels. Morphologic changes in vertebral bone and cartilaginous endplate, which occur with advancing age or degeneration, can interfere with normal disc nutrition and further the degenerative process. This disruption of the normal endplate results in deformation when under loading. Compressive damage to the vertebral body endplate alters the distribution of stresses in the adjacent disc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams MA, Hutton WC (1985) Gradual disc prolapse. Spine 10:524–531

    Article  PubMed  CAS  Google Scholar 

  2. Adams MA, Hutton WC (1982) Prolapsed intervertebral disc. A hyperflexion injury. 1981 Volvo Award in Basic Science. Spine 7:184–191

    Article  PubMed  CAS  Google Scholar 

  3. Gordon SJ, Yang KH, Mayer PJ et al (1991) Mechanism of disc rupture. A preliminary report. Spine 16:450–456

    Article  PubMed  CAS  Google Scholar 

  4. McNally DS, Adams MA, Goodship AE (1993) Can intervertebral disc prolapse be predicted by disc mechanics? Spine 18:1525–1530

    PubMed  CAS  Google Scholar 

  5. Shirazi-Adl A (1989) Strain in fibers of a lumbar disc. Analysis of the role of lifting in producing disc prolapse. Spine 14:96–103

    Article  PubMed  CAS  Google Scholar 

  6. Adams MA, Freeman BJ, Morrison HP et al (2000) Mechanical initiation of intervertebral disc degeneration. Spine 25:1625–1636

    Article  PubMed  CAS  Google Scholar 

  7. Kauppila LI, McAlindon T, Evans S et al (1997) Disc degeneration/back pain and calcification of the abdominal aorta. A 25-year follow-up study in Framingham. Spine 22: 1642–1647

    Article  PubMed  CAS  Google Scholar 

  8. Kresina TF, Malemud CJ, Moskowitz RW (1986) Analysis of osteoarthritic cartilage using monoclonal antibodies reactive with rabbit proteoglycan. Arthritis Rheum 29:863–871

    Article  PubMed  CAS  Google Scholar 

  9. Nelson CL, Janecki CJ, Gildenberg PL, Sava G (1972) Disk protrusions in the young. Clin Orthop Relat Res 88:142–150

    Article  PubMed  CAS  Google Scholar 

  10. Varlotta GP, Brown MD, Kelsey JL, Golden AL (1991) Familial predisposition for herniation of a lumbar disc in patients who are less than twenty-one years old. J Bone Joint Surg Am 73:124–128

    PubMed  CAS  Google Scholar 

  11. Matsui H, Terahata N, Tsuji H et al (1992) Familial predisposition and clustering for juvenile lumbar disc herniation. Spine 17:1323–1328

    Article  PubMed  CAS  Google Scholar 

  12. Scapinelli R (1993) Lumbar disc herniation in eight siblings with a positive family history for disc disease. Acta Orthop Belg 59:371–376

    PubMed  CAS  Google Scholar 

  13. Quinet RJ, Hadler NM (1979) Diagnosis and treatment of backache. Semin Arthritis Rheum 8:261–287

    Article  PubMed  CAS  Google Scholar 

  14. Bonneville JF, Dietemann JL (1992) Imaging in sciatica. Rev Prat 42:554–566

    PubMed  CAS  Google Scholar 

  15. Brant-Zawadzki MN, Jensen MC, Obuchowski N et al (1995) Interobserver and intraobserver variability in interpretation of lumbar disc abnormalities. A comparison of two nomenclatures. Spine 20:1257–1263

    Article  PubMed  CAS  Google Scholar 

  16. Breton G (1991) Is that a bulging disk, a small herniation or a moderate protrusion? Can Assoc Radiol J 42:318

    PubMed  CAS  Google Scholar 

  17. Fardon DF, Balderston RA, Garfin SR et al (1991) Disorders of the spine: a coding system for diagnoses. Hanley and Belfus, Philadelphia pp 20–22

    Google Scholar 

  18. Milette PC (2001) Reporting lumbar disk abnormalities: at last, consensus! AJNR Am J Neuroradiol 22:428–429

    PubMed  CAS  Google Scholar 

  19. Adams P, Eyre DR, Muir H (1997) Biochemical aspects of development and ageing of human lumbar intervertebral discs. Rheumatol Rehabil 16:22–29

    Article  Google Scholar 

  20. Brown MD (1971) The pathophysiology of disc disease. Orthop Clin North Am 2:359–370

    PubMed  CAS  Google Scholar 

  21. Lipson SJ, Muir H (1981) Experimental intervertebral disc degeneration: morphologic and proteoglycan changes over time. Arthritis Rheum 24:12–21

    Article  PubMed  CAS  Google Scholar 

  22. Pfirrmann CW, Metzdorf A, Zanetti M (2001) Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine 26:1873–1878

    Article  PubMed  CAS  Google Scholar 

  23. de Roos A, Kressel H, Spritzer C, Dalinka M (1987) MR imaging of marrow changes adjacent to end plates in degenerative lumbar disk disease. AJR Am J Roentgenol 149:531–534

    Article  PubMed  Google Scholar 

  24. Masaryk TJ, Boumphrey F, Modic MT et al (1986) Effects of chemonucleolysis demonstrated by MR imaging. J Comput Assist Tomogr 10:917–923

    Article  PubMed  CAS  Google Scholar 

  25. Modic MT, Steinberg PM, Ross JS et al (1988) Degenerative disk disease: assessment of changes in vertebral body marrow with MR imaging. Radiology 166:193–199

    PubMed  CAS  Google Scholar 

  26. Ross JS, Robertson JT, Frederickson RC et al (1996) Association between peridural scar and recurrent radicular pain after lumbar discectomy: magnetic resonance evaluation. ADCON-L European Study Group. Neurosurgery 38:855–861

    Article  PubMed  CAS  Google Scholar 

  27. Ross JS, Obuchowski N, Zepp R (1998) The postoperative lumbar spine: evaluation of epidural scar over a 1-year period. AJNR Am J Neuroradiol 19:183–186

    PubMed  CAS  Google Scholar 

  28. Masaryk TJ, Boumphrey F, Modic MT (1986) Effects of chemonucleolysis demonstrated by MR imaging. J Comput Assist Tomogr 10:917–923

    Article  PubMed  CAS  Google Scholar 

  29. Modic MT, Steinberg PM, Ross JS et al (1988) Degenerative disk disease: assessment of changes in vertebral body marrow with MR imaging. Radiology 166(1 Pt 1):193–199

    PubMed  CAS  Google Scholar 

  30. Rahme R, Moussa R (2008) The Modic vertebral endplate and marrow changes: pathologic significance and relation to low back pain and segmental instability of the lumbar spine. AJNR Am J Neuroradiol 29:838–842

    Article  PubMed  CAS  Google Scholar 

  31. Mitra D, Cassar-Pullicino VN, McCall IW (2004) Longitudinal study of vertebral type-1 end-plate changes on MR of the lumbar spine. Eur Radiol 14:1574–1581

    Article  PubMed  CAS  Google Scholar 

  32. Modic MT (2007) Modic type 1 and type 2 changes. J Neurosurg Spine 6:150–161

    Article  PubMed  Google Scholar 

  33. Vital JM, Gille O, Pointillart V et al (2003) Course of Modic 1 six months after lumbar posterior osteosynthesis. Spine 28:715–721

    PubMed  CAS  Google Scholar 

  34. Toyone T, Takahashi K, Kitahara H et al (1994) Vertebral bonemarrow changes in degenerative lumbar disc disease: an MRI study of 74 patients with low back pain. J Bone Joint Surg Br 76:757–764

    PubMed  CAS  Google Scholar 

  35. Kuisma M, Karppinen J, Niinimaki J et al (2007) Modic changes in endplates of lumbar vertebral bodies: prevalence and association with low back and sciatic pain among middleaged male workers. Spine 32:1116–1122

    Article  PubMed  Google Scholar 

  36. Albert HB, Manniche C (2007) Modic changes following lumbar disc herniation. Eur Spine J 16:977–982

    Article  PubMed  Google Scholar 

  37. Ross JS, Zepp R, Modic MT (1996) The postoperative lumbar spine: enhanced MR evaluation of the intervertebral disk. AJNR Am J Neuroradiol 17:323–331

    PubMed  CAS  Google Scholar 

  38. Masaryk, TJ, Boumphrey F, Modic MT et al (1986) The effects of chemonucleolysis demonstrated by magnetic resonance imaging. J Comput Assist Tomogr 10:917–923

    Article  PubMed  CAS  Google Scholar 

  39. Lang P, Chafetz N, Genant HK et al (1990) Lumbar spinal fusion: assessment of functional stability with magnetic resonance imaging. Spine 15:581–588

    Article  PubMed  CAS  Google Scholar 

  40. Buttermann GR, Heithoff KB, Ogilvie JW et al (1997) Vertebral body MRI related to lumbar fusion results. Eur Spine J 6:115–120

    Article  PubMed  CAS  Google Scholar 

  41. Chataigner H, Onimus M, Polette A (1998) Surgery for degenerative lumbar disc disease: should the black disc be grafted? Rev Chir OrthopReparatrice Appar Mot 84:583–589

    CAS  Google Scholar 

  42. Esposito P, Pinheiro-Franco JL, Froelich S, Maitrot D (2006) Predictive value of MRI vertebral end-plate signal changes (Modic) on outcome of surgically treated degenerative disc disease: results of a cohort study including 60 patients. Neurochirurgie 52:315–322

    Article  PubMed  Google Scholar 

  43. Harris RI, MacNab I (1954) Structural changes in the lumbar intervertebral discs; their relationship to low back pain and sciatica. J Bone Joint Surg Br 36:304–322

    PubMed  Google Scholar 

  44. Schellinger D, Wener L, Ragsdale BD, Patronas NJ (1987) Facet joint disorders and their role in the production of back pain and sciatica. Radiographics 7:923–944

    PubMed  CAS  Google Scholar 

  45. Doyle A, Merrilees M (2004) Synovial cysts of the lumbar facet joints in a symptomatic population: prevalence on magnetic resonance imaging. Spine 29:874–878

    Article  PubMed  Google Scholar 

  46. Arnoldi CC, Brodsky AE, Cauchoix J et al (1975) Lumbar spinal stenosis and nerve root entrapment syndromes. Definition and classification. Clin Orthop Relat Res 4–5

    Google Scholar 

  47. Deyo RA (1993) Practice variations, treatment fads, rising disability. Do we need a new clinical research paradigm? Spine 18:2153–2162

    Article  PubMed  CAS  Google Scholar 

  48. Borenstein DG, O’Mara JW Jr, Boden SD et al (2001) The value of magnetic resonance imaging of the lumbar spine to predict low-back pain in asymptomatic subjects: a seven-year follow-up study. J Bone Joint Surg Am 83:1306–1311

    PubMed  Google Scholar 

  49. Zelenka M, Schafers M, Sommer C (2005) Intraneural injection of interleukin-1 beta and tumor necrosis factor-alpha into rat sciatic nerve at physiological doses induces signs of neuropathic pain. Pain 116:257–263

    Article  PubMed  CAS  Google Scholar 

  50. Sox H, Stern S, Owens D, Abrams HL (1989) Assessment of diagnostic technology in health care. Rationale, methods, problems and directions. National Academy Press, Washington, DC

    Google Scholar 

  51. Wiesel SW, Tsourmas N, Feffer HL et al (1984) A study of computer-assisted tomography. I. The incidence of positive CAT scans in an asymptomatic group of patients. Spine 9:549–551

    Article  PubMed  CAS  Google Scholar 

  52. Boden SD, Davis DO, Dina TS et al (1990) Abnormal magnetic-resonance scans of the lumbar spine in asymptomatic subjects. A prospective investigation. J Bone Joint Surg Am 72:403–408

    PubMed  CAS  Google Scholar 

  53. Jensen MC, Brant-Zawadzki MN, Obuchowski N et al (1994) Magnetic resonance imaging of the lumbar spine in people without back pain. N Engl J Med 331:69–73

    Article  PubMed  CAS  Google Scholar 

  54. Saal JA, Saal JS, Herzog RJ (1990) The natural history of lumbar intervertebral disc extrusions treated nonoperatively. Spine 15:683–686

    Article  PubMed  CAS  Google Scholar 

  55. Modic MT, Ross JS, Obuchowski NA et al (1995) Contrast-enhanced MR imaging in acute lumbar radiculopathy: a pilot study of the natural history. Radiology 195:429–435

    PubMed  CAS  Google Scholar 

  56. Modic MT, Obuchowski NA, Ross JS et al (2005) Acute low back pain and radiculopathy. Radiology 237:597–604

    Article  PubMed  Google Scholar 

  57. Agency for Healthcare Research and Quality (2001) Treatment of degenerative lumbar spinal stenosis. Summary, evidence report/ technology assessment: no. 32. Agency for Healthcare Research and Quality, Rockville, MD. http://www.ahrq.gov/clinic/epcsums/stenosum.htm

    Google Scholar 

  58. Benoist M (2002) The natural history of lumbar degenerative spinal stenosis. Joint Bone Spine 69:450–457

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Italia

About this paper

Cite this paper

Modic, M.T., Pfirrmann, C.W.A. (2012). Degenerative Disc Disease of the Spine: Anatomic and Imaging Considerations. In: Hodler, J., von Schulthess, G.K., Zollikofer, C.L. (eds) Diseases of the Brain, Head & Neck, Spine 2012–2015. Springer, Milano. https://doi.org/10.1007/978-88-470-2628-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2628-5_23

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-2627-8

  • Online ISBN: 978-88-470-2628-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics