Skip to main content

Abstract

Today, the anatomy of the temporal bone can be evaluated in detail. Computed tomography (CT) is the method of choice for examining the external and middle ear. However, CT also provides a great deal of information about the inner ear. The most recent high-end CT systems, using helical scanning and multidetector technology, enable scanning of the temporal bone in detail. Images with a spatial resolution of 230 μm can be acquired on these systems, and these images can be reformatted so that they overlap every 0.1 mm. On these very thin images, partial volume is no longer a problem, and small structure can therefore be seen. Moreover, excellent multiplanar reconstructions (MPRs) can be made. Temporal-bone imaging is now also possible with high-end cone-beam (CB) CT systems, which allow images with a resolution of 75–85 μm. Structures such as branches and the footplate of the stapes, chorda tympani, Jacobson’s nerve, and tympanic nerve branches, etc. can now be reliably visualized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Suggested Reading

  • Alexander AE, Caldemeyer KS, Rigby P (1998) Clinical and surgical application of reformatted high-resolution CT of the temporal bone. Neuroimaging Clin N Am 8:31–50

    Google Scholar 

  • Bradley WG (1991) MR of the brain stem: a practical approach. Radiology 179:319–332

    PubMed  Google Scholar 

  • Casselman JW, Kuhweide R, Ampe W et al (1996) Inner ear malformations in patients with sensorineural hearing loss: detection with gradient-echo (3DFT-CISS) MR imaging. Neuroradiology 38:278–286

    Article  PubMed  CAS  Google Scholar 

  • Casselman JW (1996) Temporal bone imaging. Neuroimaging Clin North Am 6:265–289

    CAS  Google Scholar 

  • Casselman JW, Offeciers FE, Govaerts PJ et al (1997) Aplasia and hypoplasia of the vestibulocochlear nerve: diagnosis with MR imaging. Radiology 202:773–781

    PubMed  CAS  Google Scholar 

  • Casselman JW, Offeciers EF, De Foer B et al (2001) CT and MR imaging of congenital abnormalities of the inner ear and internal auditory canal. Eur J Radiol 40:94–104

    Article  PubMed  CAS  Google Scholar 

  • Casselman JW (2002) Diagnostic imaging in clinical neuro-otology. Current Opinion in Neurology 15:23–30

    PubMed  Google Scholar 

  • Casselman JW, Mermuys K, Delanote J et al (2008) MRI of the cranial nerves — more than meets the eye: technical considerations and advanced anatomy. Neuroimag Clin N Am 18:197–231

    Article  Google Scholar 

  • Casselman JW, Mark AS, Butman JA (2009) Anatomy and diseases of the temporal bone. In: Atlas SW (ed) Magnetic resonance imaging of the brain and spine, 4th edn. Lippincott Williams & Wilkins, Philadelphia, pp 1193–1257

    Google Scholar 

  • De Foer B, Vercruysse J-P, Pouillon M et al (2007) Value of highresolution computed tomography and magnetic resonance imaging in the detection of residual cholesteatoma in primary bony obliterated mastoids. Am J Otolaryngol 28:230–234

    Article  PubMed  Google Scholar 

  • De Foer B, Vercruysse J-P, Bernaerts A et al (2010) Value of non echo-planar diffusion-weighted MR imaging versus delayed post-gadolinium T1-weighted MR imaging for the detection of middle ear cholesteatoma. Radiology 255:866–872

    Article  PubMed  Google Scholar 

  • De Foer B, Vercruysse J-P, Spaepen M et al (2010) Diffusionweighted magnetic resonance imaging of the temporal bone. Neuroradiology 52:785–807

    Article  PubMed  Google Scholar 

  • Dietz RR, Davis WL, Harnsberger HR et al (1994) MR imaging and MR angiography in the evaluation of pulsatile tinnitus. Am J Neuroradiol 15:890–892

    Google Scholar 

  • Deplanque D, Godefroy O, Guerouaou D et al (1998) Sudden bilateral deafness: lateral inferior pontine infarction. J Neurol Neurosurg Psychiatry 64:817–818

    Article  PubMed  CAS  Google Scholar 

  • Dubrulle F, Ernst O, Vincent C et al (2000) Enhancement of the cochlear fossa in the MR evaluation of vestibular schwannoma: correlation with success at hearing preservation surgery. Radiology 215:458–462

    PubMed  CAS  Google Scholar 

  • Juliano AFT, Maya M, Lo WW, Kovanlikaya I (2011) Temporal bone tumors and cerebellopontine angle lesions. In: Som PM, Bergeron RT (eds) Head and neck imaging, 5th edn. Mosby, St Louis, pp1449–1531

    Google Scholar 

  • Maheshwari S, Mukherji SK (2002) Diffusion-weighted imaging for differentiating recurrent cholesteatoma tissue after mastoidectomy: case report. Am J Neuroradiol 23:847–849

    PubMed  Google Scholar 

  • Mark AS (1994) Contrast-enhanced magnetic resonance imaging of the temporal bone. Neuroimaging Clin North Am 4:561–578

    Google Scholar 

  • Moonis G, Lo WWM, Maya M (2011) Vascular tinnitus of the temporal bone. In: Som PM, Curtin HD (eds) Head and neck imaging, 5th edn. Mosby, St. Louis, pp 1409–1422

    Chapter  Google Scholar 

  • Nayak S (2001) Segmental anatomy of the temporal bone. Semin Ultrasound CT MR 22:184–218

    Article  PubMed  CAS  Google Scholar 

  • Nair SB, Abou-Elhamd KA, Hawtorne M (2000) A retrospective analysis of high-resolution computed tomography in the assessment of cochlear implant patients. Clin Otolaryngol 25:55–61

    Article  PubMed  CAS  Google Scholar 

  • Phelps PD, Reardon W, Pembrey M (1991) X-linked deafness, stapes gushers and a distinctive defect of the inner ear. Neuroradiology 33:326–330

    Article  PubMed  CAS  Google Scholar 

  • Sartoretti-Schefer S (1997) Gadolinium-DTPA enhanced MRI of the facial nerve in patients with posttraumatic facial nerve palsy. Am J Neuroradiol 18:1115–1125

    PubMed  CAS  Google Scholar 

  • Sartoretti-Schefer S, Kollias S, Wichmann W, Valavanis AS (1998) T2-weighted three-dimensional fast spin-echo MR in inflammatory peripheral facial nerve palsy. Am J Neuroradiol 19:491–495

    PubMed  CAS  Google Scholar 

  • Sasaki O, Ootsuka K, Taguchi K, Kikukawa M (1994) Multiple sclerosis presented acute hearing loss and vertigo. ORL J Otorhinolaryngol Relat Spec 56:55–59

    Article  PubMed  CAS  Google Scholar 

  • Somers T, Casselman J, de Ceulaer G et al (2001) Prognostic value of MRI findings in hearing preservation surgery for vestibular schwannoma. Am J Otology 22:87–94

    Article  CAS  Google Scholar 

  • Swartz JD, Harnsberger HR (1998) Temporal bone vascular anatomy, anomalies, and diseases, emphasizing the clinical-radiological problem of pulsatile tinnitus. In: Swartz JD, Harnsberger HR (eds) Imaging of the temporal bone. Thieme, New York, pp 170–239

    Google Scholar 

  • Swartz JD, Harnsberger HR (1998) The otic capsule and osteodystrophies. In: Swartz JD, Harnsberger HR (eds) Imaging of the temporal bone. Thieme, New York, pp 240–317

    Google Scholar 

  • Tieleman A, Casselman JW, Somers T et al (2008) Imaging of intralabyrinthine schwannomas: a retrospective study of 52 cases with emphasis on lesion growth. AJNR Am J Neuroradiol 898–905

    Google Scholar 

  • Van den Brink JS, Watanabe Y, Kuhl CK et al (2003) Implications of SENSE MR in routine clinical practice. Eur J Radiol 46:3–27

    Article  PubMed  Google Scholar 

  • Veillon F, Baur P, Dasch JC et al (1991) Traumatismes de l’os temporal. In: Veillon F (ed) Imagerie de l’oreille. Médecine-Sciences, Flammarion, Paris, pp 243–281

    Google Scholar 

  • Veillon F, Riehm S, Emachescu B et al (2001) Imaging of the windows of the temporal bone. Semin Ultrasound CT MR 22:271–280

    Article  PubMed  CAS  Google Scholar 

  • Vercruysse J-P, De Foer B, Pouillon M et al (2006) The value of diffusion-weighted MR imaging in the diagnosis of primary acquired and residual cholesteatoma: a surgical verified study of 100 patients. Eur Radiol 16:1461–1467

    Article  PubMed  Google Scholar 

  • Williams MT, Ayache D, Alberti C et al (2003) Detection of residual cholesteatoma with delayed contrast-enhanced MR imaging: initial findings. Eur Radiol 13:169–174

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Italia

About this paper

Cite this paper

Casselman, J.W., Veillon, F. (2012). Temporal Bone and Auditory Pathways. In: Hodler, J., von Schulthess, G.K., Zollikofer, C.L. (eds) Diseases of the Brain, Head & Neck, Spine 2012–2015. Springer, Milano. https://doi.org/10.1007/978-88-470-2628-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2628-5_18

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-2627-8

  • Online ISBN: 978-88-470-2628-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics