Advertisement

Degenerative Brain Disease and Aging

  • Marco Essig
  • Mark A. van Buchem

Abstract

With the increase of the mean age of the populations, neurodegenerative diseases are becoming more and more important. Early diagnosis is of particular importance to allow for early therapeutic intervention, as neurodegeneration begins long before the patient experiences symptoms. The diseases might present the strongest biological activity months or even years before clinical symptoms become obvious. Imaging, with its sensitivity to detect even subtle changes in the brain, may be of vital importance in this scenario. Even with the fact that the radiological evaluation of neurodegenerative diseases has markedly improved with the introduction of modern magnetic resonance imaging (MRI) techniques, the differential diagnosis between diseases is still a challenge, requiring a detailed analysis of normal aging changes and always includes assessment of clinical findings and laboratory tests.

Keywords

Amyotrophic Lateral Sclerosis Mild Cognitive Impairment Multiple System Atrophy Vascular Dementia Normal Pressure Hydrocephalus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Suggested Reading

Aging

  1. Busse A, Bischkopf J, Riedel-Heller SG, Angermeyer MC (2003) Mild cognitive impairment: prevalence and incidence according to different diagnostic criteria. Br J Psychiatry 182:449–454PubMedCrossRefGoogle Scholar
  2. Jack CR Jr, Petersen RC, Xu YC et al (1999) Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment. Neurology 52:1397–1403PubMedCrossRefGoogle Scholar
  3. Petersen RC, Smith GE, Waring SC et al (1997) Aging, memory, and mild cognitive impairment. Int Psychogeriatr 9:65–69PubMedCrossRefGoogle Scholar
  4. Ritchie K, Arteron S, Touchon J (2001) Classification criteria for mild cognitive impairment — a population-based validation study. Neurology 56:37–42PubMedCrossRefGoogle Scholar

Imaging in Aging

  1. Ball MJ, Fisman M, Hachinski V et al (1985) A new definition of Alzheimer’s disease: a hippocampal dementia. Lancet 1:14–16PubMedCrossRefGoogle Scholar
  2. Boccardi M, Laakso MP, Bresciani L et al (2003) The MRI pattern of frontal and temporal brain atrophy in fronto-temporal dementia. Neurobiol Aging 24:95–103PubMedCrossRefGoogle Scholar
  3. Braak H, Braak E, Bohl J (1993) Staging of Alzheimer-related cortical destruction. Eur Neurol 33:403–408PubMedCrossRefGoogle Scholar
  4. Chan D, Fox NC, Jenkins R et al (2001) Rates of global and regional cerebral atrophy in AD and frontotemporal dementia. Neurology 57:1756–1763PubMedCrossRefGoogle Scholar
  5. Convit A, de Leon MJ, Tarshish C et al (1997) Specific hippocampal volume reductions in individuals at risk for Alzheimer’s disease. Neurobiol Aging 18:131–138PubMedCrossRefGoogle Scholar
  6. Erkinjuntti T (2002) Diagnosis and management of vascular cognitive impairment and dementia. J Neural Transm Suppl 63:91–109PubMedGoogle Scholar
  7. Galton CJ, Gomez-Anson B, Antoun N et al (2001) Temporal lobe rating scale: application to Alzheimer’s disease and frontotemporal dementia. J Neurol Neurosurg Psychiatry 70:165–173PubMedCrossRefGoogle Scholar
  8. Giesel FL, Hahn HK, Thomann PA et al (2006) Temporal horn index and volume of medial temporal lobe atrophy using a new semiautomated method for rapid and precise assessment. Am J Neuroradiol 27(7):1454–1458PubMedGoogle Scholar
  9. Greenberg SM, Vernooij MW, Cordonnier C et al (2009) Cerebral microbleeds: a guide to detection and interpretation. Lancet Neurology 8:165–174PubMedCrossRefGoogle Scholar
  10. Jack CR, Petersen RC, Xu YC et al (1998) Medial temporal atrophy on MRI in normal aging and very mild AD. Neurology 51:993–999PubMedCrossRefGoogle Scholar
  11. Jack CR, Petersen RC, Xu Y et al (2000) Rates of hippocampal atrophy correlate with change in clinical status in aging and AD. Neurology 55:484–489PubMedCrossRefGoogle Scholar
  12. Johnson S, Saykin A, Baxter L et al (2000) The relationship between fMRI activation and cerebral atrophy: comparison of normal aging and Alzheimer disease. Neuroimage 11:179–187PubMedCrossRefGoogle Scholar
  13. Kato T, Knopman D, Liu H (2001) Dissociation of regional activation in mild AD during visual encoding. Neurology 57:812–816PubMedCrossRefGoogle Scholar
  14. Kaye JA, Swihart T, Howieson D et al (1997) Volume loss of the hippocampus and temporal lobe in healthy elderly persons destined to develop dementia. Neurology 48:1297–1304PubMedCrossRefGoogle Scholar
  15. Laakso MP, Partanen K, Lehtovirta M et al (1995) MRI of amygdala fails to diagnose early Alzheimer’s disease. Neuroreport 6:2414–2418PubMedCrossRefGoogle Scholar
  16. Laakso MP, Soininen H, Partanen K et al (1998) MRI of the hippocampus in Alzheimer’s disease: sensitivity, specificity, and analysis of the incorrectly classified subjects. Neurobiol Aging 19:23–31PubMedCrossRefGoogle Scholar
  17. Massoud F, Devi G, Moroney JT et al (2000) The role of routine laboratory studies and neuroimaging in the diagnosis of dementia: a clinicopathological study. J Am Geriatr Soc 48:1204–1210PubMedGoogle Scholar
  18. Neary D, Snowden J, Mann D (2005) Frontotemporal dementia. Lancet Neurol 4:771–780PubMedCrossRefGoogle Scholar
  19. Pantel J, Kratz B, Essig M, Schröder J (2003) Parahippocampal volume deficits in subjects with aging-associated cognitive decline. Am J Psychiatry 160:379–382PubMedCrossRefGoogle Scholar
  20. Pantel J, Schönknecht P, Essig M et al (2002) Progressive medial temporal lobe changes in Alzheimer’s disease revealed by quantitative MRI: potential use for monitoring of drug-related changes. Drug Dev Res 56:51–56CrossRefGoogle Scholar
  21. Prvulovic D, Hubl D, Sack A et al (2002) Functional imaging of visuospatial processing in Alzheimer’s disease. Neuroimage 17:1403–1414PubMedCrossRefGoogle Scholar
  22. Roman GC, Erkinjuntti T, Wallin A et al (2002) Subcortical ischaemic vascular dementia. Lancet Neurol 1:426–436PubMedCrossRefGoogle Scholar
  23. Rombouts S, Barkhof F, Veltman D et al (2000) Functional MR imaging in Alzheimer’s disease during memory encoding. AJNR Am J Neuroradiol 21:1869–1875PubMedGoogle Scholar
  24. Saykin A, Flashman L, Frutiger S et al (1999) Neuroanatomic substrates of semantic memory impairment in Alzheimer’s disease: patterns of functional MRI activation. J Int Neuropsychol Soc 5:377–392PubMedCrossRefGoogle Scholar
  25. Small S, Perera G, Delapaz R et al (1999) Differential regional dysfunction of the hippocampal formation among elderly with memory decline and Alzheimer’s disease. Ann Neurol 45:466–472PubMedCrossRefGoogle Scholar
  26. Soininen HS, Partanen K, Pitkänen A et al (1994) Volumetric MRI analysis of the amygdala and the hippocampus in subject with age-associated memory impairment: correlation to visual and verbal memory. Neurology 44:1660–1668PubMedCrossRefGoogle Scholar
  27. Visser PJ, Scheltens P, Verhey FRJ et al (1999) Medial temporal lobe atrophy and memory dysfunction as predictors for dementia in subjects with mild cognitive impairment. J Neurol 246:477–485PubMedCrossRefGoogle Scholar
  28. Whitwell J, Jack CR (2005) Comparison between Alzheimer disease, frontotemporal lobar degeneration and normal aging with brain imaging. Top Magn Reson Imaging 16:409–426PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2012

Authors and Affiliations

  • Marco Essig
    • 1
  • Mark A. van Buchem
    • 2
  1. 1.Department of NeuroradiologyUniversity of ErlangenErlangenGermany
  2. 2.Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands

Personalised recommendations