Skip to main content

Part of the book series: MS&A ((MS&A))

  • 2161 Accesses

Abstract

Various ions, such as Ca2+, Na+, and K+, enter and exit a cell through selective ion pumps and channels, such as potassium channels, voltage-gated sodium channels, voltage-gated calcium channels, sodium/calcium exchangers, and plasma membrane (PM) calcium ATPases, as demonstrated in Fig. 6.1. Calcium ions Ca2+ enter the cytosol through store-operated channels (SOC) and voltage-gated calcium channels (VGCC). The sarcoplasmic or endoplasmic reticulum Ca2+-ATPases (SERCA) pump Ca2+ from the cytosol into the endoplasmic reticulum (ER) and Ca2+ in ER are released to the cytosol through the inositol (1,4,5)-trisphosphate (IP3)- and Ca2+-mediated inositol (1,4,5)-trisphosphate receptors (IP3R). Ca2+ enter the mitochondrion through uniporters and exit through Ca2+/Na+ antiporters. Ca2+ exit the cytosol through plasma membrane Ca2+-ATPases (PMCA) and Ca2+/Na+ exchangers. Depletion of ER Ca2+ stores causes STIM1 to move to ER-PM junctions, bind to Orai1, and activate store-operated channels for Ca2+ entry [63]. Sodium ions Na+ enter the cytosol through sodium channels (NC) and Ca2+/Na+ exchangers, and exit through N+/K+ ATPases (NKA). Potassium ions K+ enter the cytosol through N+/K+ ATPases and exit through ATP-sensitive K+ channels (ATPKC), delayed rectifying K+ channels (DrKC), and calcium-activated K+ channels (CAKC). H+ ions in mitochondrion are ejected by the respiratory chain driven by the energy released from oxidation of NADP, which are produced from the tricarboxylic acid cycle (TAC, also called Krebs cycle).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atri A., Amundson J., Clapham D., Sneyd J.: A Single-pool model for Intracelilular calcium oscillations and waves in the Xenopus Laevis oocyte. Biophys. J. 65, 1727–1739 (1993).

    Article  Google Scholar 

  2. Bertram R., Smolen P., Sherman A., Mears D., Atwater I., Martin F., Soria, B.: A role for calcium release-activated current (CRAC) in cholinergic modulation of electrical activity in pancreatic β-Cells. Biophysical J. 68, 2323–2332 (1995).

    Article  Google Scholar 

  3. Bertram R., Previte J., Sherman A., Kinard T.A., Satin L.S.: The phantom burster model for pancreatic β-cells, Biophysical J. 79, 2880–2892 (2000).

    Article  Google Scholar 

  4. Bezprozvanny I., Watras J., Ehrlich B.E.: Bell-shaped calcium-response curve of Ins(1,4,5)P3-and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature 351, 751–754 (1991).

    Article  Google Scholar 

  5. Bolsover S.R., Hyams J.S., Shephard E.A., White H.A., Wiedemann C.G.: Cell Biology, A Short Course, Seond Edition. John Wiley & Sons, Inc., Hoboken, New Jersey (2004).

    Google Scholar 

  6. Campbell E.T., Hille B.: Kinetic and pharmacological properties of the sodium channel of frog skeletal muscle. J. General Physiology 67, 309–323 (1976).

    Article  Google Scholar 

  7. Cens T., Rousset M., Leyris J. P., Fesquet P., Charnet P.: Voltage-and calcium-dependent inactivation in high voltage-gated Ca2+ channels. Prog. Biophys. Mol. Biol. 90, 104–117 (2006).

    Article  Google Scholar 

  8. Chapman J.B., Johnson E.A., Kootsey J.M.: Electrical and biochemical properties of an enzyme model of the sodium pump. J. Membr. Biol. 74, 139–153 (1983).

    Article  Google Scholar 

  9. Chay T.R., Keizer J.: Minimal model for membrane oscillations in the pancreatic β-cell. Biophysical J. 42, 181–190 (1983).

    Article  Google Scholar 

  10. Chay T.R.: Effects of extracellular calcium on electrical bursting and intracellular and luminal calcium oscillations in insulin secreting pancreatic β-cells. Biophys. J. 73, 1673–1688 (1997).

    Article  Google Scholar 

  11. Ching L.L., Williams A.J., Sitsapesan R.: Evidence for Ca2+ activation and inactivation sites on the luminal side of the cardiac ryanodine receptor complex. Circ. Res. 87, 201–206 (2000).

    Google Scholar 

  12. DiFrancesco D., Noble D.: A model of cardiac electrical activity incorporating ionic pumps and concentration changes. Philos. Trans. R. Soc. Lond. B Biol. Sci. 307, 353–398 (1985).

    Article  Google Scholar 

  13. Dufour J.-F., Arias I.M., Turner T.J.: Inositol 1,4,5-trisphosphate and calcium regulate the calcium channel function of the hepatic inositol 1,4,5-trisphosphate receptor. J. Biol. Chem. 272, 2675–2681 (1997).

    Article  Google Scholar 

  14. Favre C.J., Schrenzel J., Jacquet J., Lew D.P., Krause K.-H.: Highly supralinear feedback inhibition of Ca2+ uptake by the Ca2+ load of intracellular stores. J. Biol. Chem. 271, 14925–14930 (1996).

    Article  Google Scholar 

  15. Frankenhaeuser B.: Quantitative description of sodium currents in myelinated nerve fibres of Xenopus Laevis. J. Physiol. 151, 491–501 (1960).

    Google Scholar 

  16. Frankenhaeuser B.: Sodium permeability in toad nerve and in squid nerve. J. Physiol. 152, 159–166 (1960).

    Google Scholar 

  17. Frankenhaeuser B.: A quantitative description of potassium currents in myelinated nerve fibres of Xenopus Laevis. J. Physiol. 169, 424–430 (1963).

    Google Scholar 

  18. Fridlyand L.E., Tamarina N., Philipson L.H.: Modeling of Ca2+ flux in pancreatic β-cells: role of the plasma membrane and intracellular stores. Am. J. Physiol. Endocrinol. Metab. 285, E138–E154 (2003).

    Google Scholar 

  19. Fridlyand L.E., Jacobson D.A., Kuznetsov A., Philipson L.H.: Amodel of action potentials and fast Ca2+ dynamics in pancreatic beta-cells. Biophys J. 96, 3126–3139 (2009).

    Article  Google Scholar 

  20. Gall D., Gromada J., Susa I., Rorsman P., Herchuelz A., Bokvist K.: Significance of Na/Ca exchange for Ca2+ buffering and electrical activity in mouse pancreatic β-cells. Biophys. J. 76, 2018–2028 (1999).

    Article  Google Scholar 

  21. Göpel S., Kanno T., Barg S., Galvanovskis J., Rorsman P.: Voltage-gated and resting membrane currents recorded from β-cells in intact mouse pancreatic islets. J. Physiology, 521, 717–728 (1999).

    Article  Google Scholar 

  22. Grandi E., Morotti S., Ginsburg K.S., Severi S., Bers D.M.: Interplay of voltage and Cadependent inactivation of L-type Ca current. Progress in Biophysics and Molecular Biology 103, 44–50 (2010).

    Article  Google Scholar 

  23. Guo W., Campbell K.P.: Association of triadin with the ryanodine receptor and calsequestrin in the lumen of the sarcoplasmic reticulum. J. Biol. Chem. 270, 9027–9030 (1995).

    Article  Google Scholar 

  24. Gyorke I., Hester N., Jones L.R., Gyorke S.: The role of calsequestrin, triadin, and junctin in conferring cardiac ryanodine receptor responsiveness to luminal calcium. Biophys. J. 86, 2121–2128 (2004).

    Article  Google Scholar 

  25. Hagar R.E., Ehrlich B.E.: Regulation of the type III InsP(3) receptor by InsP(3) and ATP. Biophys J. 79, 271–278 (2000).

    Article  Google Scholar 

  26. Hille B.: Ion Channels of Excitable Memebranes. Sinauer Associates, INC., Sunderland, Massachusetts (2001).

    Google Scholar 

  27. Hodgkin A.L., Huxley A.F.: Aquantitativfe description ofmembrane current and its application to conduction and excitation in nerve. J. Physicol. 117, 500–544 (1952).

    Google Scholar 

  28. Hopkins W.F., Fatherazi S., Peter-Riesch B., Corkey B.E., Cook D.L.: Two sites for adenine-nucleotide regulation of ATP-sensitive potassium channels in mouse pancreatic β-cells and HIT cells. J. Membr. Biol. 129, 287–295 (1992).

    Google Scholar 

  29. John S.A., Weiss J.N., Ribalet B.: ATP sensitivity of ATP-sensitive K+ channels: role of the γ phosphate group of ATP and the R50 residue of mouse Kir6.2. J. Physiol. 568, 931–940 (2005).

    Article  Google Scholar 

  30. Joshph S.K., Rice H.L., Williamson J.R.: The effect of external calcium and pH on inositol trisphosphate-mediated calcium release from cerebellum microsomal fractions. Biochem. J. 258, 261–265 (1989).

    Google Scholar 

  31. Kakei M., Kelly R.D., Ashcroft S., Ashcroft F.: The ATP-sensitivity of K+ channels in rat pancreatic β-cells is modulated by ADP. FEBS Lett. 208, 63–66 (1986).

    Article  Google Scholar 

  32. Kang T.M., Hilgemann D.W.: Multiple transport modes of the cardiac Na+/Ca2+ exchanger. Nature 427, 544–548 (2004).

    Article  Google Scholar 

  33. Keener J., Sneryd J.: Mathematical Physiology I: Cellular Physiology, II: Systems Physiology, Second Edition. Springer, New York (2009).

    Google Scholar 

  34. Keizer J., Magnus G.: ATP-sensitive potassium channel and bursting in the pancreatic beta cell. A theoretical study. Biophys. J. 56, 229–242 (1989).

    Article  Google Scholar 

  35. Keizer J., De Young G.W.: Two roles for Ca2+ in agonist stimulated Ca2+ oscillations. Biophys. J. 61, 649–660 (1992).

    Article  Google Scholar 

  36. Köhler M., Hirschberg B., Bond C.T., Kinzie J.M., Marrion N.V., Maylie J., Adelman J.P.: Small-conductance, calciuma-ctivated potassium channels from mammalian brain. Science 273, 1709–1714 (1996).

    Article  Google Scholar 

  37. Lee Y., Keener J.P.: A calcium-induced calcium release mechanism mediated by calsequestrin. J. Theor. Biol. 253, 668–679 (2008).

    Article  Google Scholar 

  38. Leinders T., Vijverberg H.P.M.: Ca2+ dependence of small Ca2+-activated K+ channels in cultured N1E-115 mouse neuroblastoma cells. Pflügers Arch. 422, 223–232 (1992).

    Article  Google Scholar 

  39. Liu W., Tang F., Chen J.: Designing dynamical output feedback controllers for storeoperated Ca2+ entry. Math. Biosci. 228, 110–118 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  40. Luo C.H., Rudy Y.: A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes. Circ. Res. 74, 1071–1096 (1994).

    Google Scholar 

  41. Lytton J., Westlin M., Burk S.E., Shull G.E., MacLennan D.H.: Functional comparisons between isoforms of the sarcoplasmic or endoplasmic reticulum family of calcium pumps. J. Biol. Chem. 267, 14483–14489 (1992).

    Google Scholar 

  42. Magnus G., Keizer J.: Model of β-cell mitochondrial calcium handling and electrical activity. I. Mitochondrial variables. Am. J. Physiol. Cell Physiol. 274, C1158–C1173 (1998).

    Google Scholar 

  43. Magnus G., Keizer J.: Model of β-cell mitochondrial calcium handling and electrical activity. II. Cytoplasmic variables. Am. J. Physiol. Cell Physiol. 274, C1174–C1184 (1998).

    Google Scholar 

  44. Mahajan A., Shiferaw Y., Sato D., Baher A., Olcese R., Xie L.-H., Yang M.-J., Chen P.-S., Restrepo J.G., Karma, A., Garfinkel A., Qu Z., Weiss J.N.: A rabbit ventricular action potential model replicating cardiac dynamics at rapid heart rates. Biophysical J. 94, 392–410 (2008).

    Article  Google Scholar 

  45. Mak D.O., McBride S., Foskett J.K.: Regulation by Ca2+ and inositol 1,4,5-trisphosphate (InsP3) of single recombinant type 3 InsP3 receptor channels. Ca2+ activation uniquely distinguishes types 1 and 3 insp3 receptors. J. Gen. Physiol. 117, 435–446 (2001).

    Article  Google Scholar 

  46. Marchant J.S., Taylor C.W.: Rapid activation and partial inactivation of inositol trisphosphate receptors by inositol trisphosphate. Biochemistry 37, 11524–11533 (1998).

    Article  Google Scholar 

  47. Meyer T., Wensel T., Stryer L.: Kinetics of calcium channel opening by inositol 1,4,5-trisphosphate. Biochemistry 29, 32–37 (1990).

    Article  Google Scholar 

  48. Mears D., Sheppard N.F. Jr, Atwater I., Rojas E., Bertram R., Sherman A.: Evidence that calcium release-activated current mediates transient glucose-induced electrical activity in the pancreatic β-cell. J. Membr. Biol. 155, 47–55 (1997).

    Article  Google Scholar 

  49. Mears D., Rojas E.: Properties of voltage-gated Ca2+ currents measured from mouse pancreatic β-cells in situ. Biol. Res. 39, 505–520 (2006).

    Article  Google Scholar 

  50. Miwa Y., Imai Y.: Simulation of spike-burst generation and Ca2+ oscillation in pancreatic β-cells. Jpn. J. Physiol. 49, 353–364 (1999).

    Article  Google Scholar 

  51. Plant R.E.: The effects of calcium++ on bursting neurons. A modeling study. Biophys. J. 21, 217–237 (1978).

    Article  Google Scholar 

  52. Plant T.D.: Properties and calcium-dependent inactivation of calcium currents in cultured mouse pancreatic β-cells. J. Physiol. 404, 731–747 (1988).

    Google Scholar 

  53. Potier M., Trebak M.: New developments in the signaling mechanisms of the storeoperated calcium entry pathway. Pflugers Arch. 457, 405–415 (2008).

    Article  Google Scholar 

  54. Raeymaekers L., Vandecaetsbeek I., Wuytack F., Vangheluwe P.: Modeling Ca2+ dynamics of mouse cardiac cells points to a critical role of SERCA’s affinity for Ca2+. Biophys. J. 100, 1216–1225 (2011).

    Article  Google Scholar 

  55. Ramos-Franco J., Bare D., Caenepeel S., Nani A., Fill M., Mignery G.: Single-channel function of recombinant type 2 inositol 1,4,5-trisphosphate receptor. Biophy. J. 79, 1388–1399 (2000).

    Article  Google Scholar 

  56. Rorsman P., Trube G.: Calcium and delayed potassium currents in mouse pancreatic β-cells under voltage clamp conditions. J. Physiol. (Lond.) 375, 531–550 (1986).

    Google Scholar 

  57. Sham J.S., Song L.S., Chen Y., Deng L.H., Stern M.D., Lakatta E.G., Cheng H.: Termination of Ca2+ release by a local inactivation of ryanodine receptors in cardiac myocytes. Proc. Natl. Acad. Sci. USA 95, 15096–15101 (1998).

    Article  Google Scholar 

  58. Sherman A., Rinzel J., Keizer J.: Emergence of organized bursting in clusters of pancreatic β-cells by channel sharing. Biophys. J. 54, 411–425 (1988).

    Article  Google Scholar 

  59. Smith P.A., Bokvist K., Arkhammar P., Berggren P.-O., Rorsman, P.: Delayed rectifying and calcium-activated K+ channels and their significance for action potential repolarization in mouse pancreatic β-cells. J. Gen. Physiol. 95, 1041–1059 (1990).

    Article  Google Scholar 

  60. Sneyd J., Dufour J.F.: Adynamicmodel of the type-2 inositol trisphosphate receptor. Proc. Natl. Acad. Sci. USA 99, 2398–2403 (2002).

    Article  Google Scholar 

  61. Sneyd J., Tsaneva-Atanasova K., Bruce J.I., Straub S.V., Giovannucci D.R., Yule D.I.: A Model of calcium waves in pancreatic and parotid acinar cells. Biophys. J. 85, 1392–1405 (2003).

    Article  Google Scholar 

  62. Sneyd J., Tsaneva-Atanasova K., Yule D.I., Thompson J.L., Shuttleworth T.J.: Control of calcium oscillations by membrane fluxes. PNAS. 101, 1392–1396 (2004).

    Article  Google Scholar 

  63. Tamarina N.A., Kuznetsov A., Philipson L.H.: Reversible translocation of EYFP-tagged STIM1 is coupled to calcium infux in insulin secreting β-cells. Cell Calcium 44, 533–544 (2008).

    Article  Google Scholar 

  64. Vanderheyden V., Devogelaere B., Missiaen L., De Smedt H., Bultynck G., Parys J.B.: Regulation of inositol 1,4,5-trisphosphate-induced Ca2+ release by reversible phosphorylation and dephosphorylation. BBA-Molecular Cell Research 1793, 959–970 (2009).

    Google Scholar 

  65. Vogalis F., Goyal R.K.: Activation of small conductance Ca2+-dependent K+ channels by purinergic agonists in smooth muscle cells of the mouse. J. Physiology 502, 497–508 (1997).

    Article  Google Scholar 

  66. Yang Y.C., Fann M.J., Chang W.H., Tai L.H., Jiang J.H., Kao L.S.: Regulation of sodiumcalcium exchanger activity by creatine kinase under energy-compromised conditions. J. Biol. Chem. 285, 28275–28285 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Italia

About this chapter

Cite this chapter

Liu, W. (2012). Kinetics of Ion Pumps and Channels. In: Introduction to Modeling Biological Cellular Control Systems. MS&A. Springer, Milano. https://doi.org/10.1007/978-88-470-2490-8_6

Download citation

Publish with us

Policies and ethics