Skip to main content

Numeracy, Metrology and Mathematics in Mesopotamia: Social and Cultural Practices

  • Chapter
Imagine Math
  • 2870 Accesses

Abstract

Since the first decipherments of cuneiform writing in the XIX century, academics have been interested in the reconstruction of the ancient Near Eastern numerical and metrological systems as well as abstract ideas and techniques, which were identified, in modern times, as mathematics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See [17], [30], [18].

  2. 2.

    for this topic, see [28], 268–274.

  3. 3.

    See the recent study by Eleanor Robson on the social history of mathematics from ancient Iraq [28]. For a summary of the main ideas developed in this work, see [23].

  4. 4.

    See the recent study on Hammurabi of Babylon by Dominique Charpin [6].

  5. 5.

    For an overview of the ancient Near East history, [31].

  6. 6.

    For the invention of cuneiform writing, see [13].

  7. 7.

    See, for example [32].

  8. 8.

    After 1600 BC, mathematical activity appeared to come to a halt in Mesopotamia. But our picture of Mesopotamian mathematics is skewed by the accidents of discovery and depends on excavations. Never-theless, one knows that, between 1600 and 1000 BCE, mathematical and metrological texts continued to be copied and learnt by apprentice scribes (for example in Aššur on the Tigris or in Hazor on the western coast).

  9. 9.

    See the historiography available in [15] and [24].

  10. 10.

    One should note that, given the lack of archaeological context for most tablets, placing them in an accurate historical context was difficult.

  11. 11.

    See the remarks in [15] and [28], 268–274.

  12. 12.

    See [18] and [1].

  13. 13.

    See, for example, [20], [21], [9], [11] and [29]

  14. 14.

    See [14].

  15. 15.

    I give here an example, which was already described in details by Robson, because it is clear and convenient (for further commentary, see [28], 276–277). All the numbers are given in the modern transliteration of the sexagesimal place value system. Sexagesimal places are separated by a space. In order to approach the absolute value of a sexagesimal number, academics use a semicolon to mark the boundary between the whole and fractional parts of the number. For example, 14; 30 stands for 14+30×60−1 = 141/2 and 3 03 for 3 ×60+3 = 183.

  16. 16.

    [28], 290.

  17. 17.

    See [27].

  18. 18.

    See [2].

  19. 19.

    See [19].

  20. 20.

    See [7] for this development of the number concept.

  21. 21.

    See [5], 419–33.

  22. 22.

    For this curriculum, see [25], [28], 85–113 and [33]. An example of mathematical education at Ur is given [12].

  23. 23.

    See [26].

  24. 24.

    See comments in [28], 96–106, [3] and [4].

  25. 25.

    See [8].

  26. 26.

    26See [22].

References

  1. E.M. Bruins, M. Rutten, Textes mathématiques de Suse (Mémoires de la Mission Archéologique en Iran 34). Geuthner, Paris, 1961.

    Google Scholar 

  2. E. Cancik-Kirschbaum, G. Chambon, Maßangaben und Zahlvorstellung in archaischen Texten. Altorientalische Forschungen 3: 189–214, 2006.

    Google Scholar 

  3. G. Chambon, Numeracy and Metrology. In: K. Radner, E. Robson (eds.), Oxford Handbook of Cuneiform Culture. Oxford, 2011.

    Google Scholar 

  4. G. Chambon, E. Robson, Untouchable or unrepeatable? The upper end of the Old Babylonian metrological systems for capacity and area. Iraq 73: 127–147, 2011.

    Google Scholar 

  5. D. Charpin, Le clergé d’Ur au siècle d’Hammurabi (XIXe–XVIIIe siècles av.J.-C.) (Hautes É tudes Orientales 22). Droz, Geneva, 1986.

    Google Scholar 

  6. D. Charpin, Hammu-rabi de Babylone. PUF, Paris, 2003.

    Google Scholar 

  7. P. Damerow, Vorüberlegungen zu einer historischen Epistemologie der Zahlbegriffsentwicklung. In: G. Dux, U. Wenzel (eds.), Der Prozess der Geistesgeschichte. Studien zur ontogenetischen und historischen Entwicklung des Geistes, Frankfurt am Main, 248–322, 1994.

    Google Scholar 

  8. J. Friberg, Methods and traditions of Babylonian mathematics: Plimpton 322, Pythagorean triples and the Babylonian triangle parameter equations. Historia Mathematica 8: 277–318, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  9. J. Friberg, Three remarkable texts from ancient Ebla. Vicino Oriente 6: 3–25, 1986.

    Google Scholar 

  10. J. Friberg, Mathematik. In: Reallexikon der Assyriologie, vol. 7, ed. D.O. Edzard, 457–517. de Gruyter, Berlin, 1987-90.

    Google Scholar 

  11. J. Friberg, Round and almost round numbers in proto-literate metromathematical field texts. Archiv für Orientforschung 44-5: 1–58, 1997-98.

    Google Scholar 

  12. J. Friberg, Mathematics at Ur in the Old Babylonian period. Revue d’Assyriologie 94: 97–188, 2000.

    Google Scholar 

  13. J.-J. Glassner, The invention of cuneiform: writing in Sumer, trans. Z. Bahrani and M. Van De Mieroop. John Hopkins University Press, Baltimore, 2003.

    Google Scholar 

  14. J. Høyrup, Algebra and naive geometry. An investigation of some basic aspects of Old Babylonian mathematical thought. Altorientalische Forschungen 17: 27–69, 262–354, 1990.

    Google Scholar 

  15. J. Høyrup, Changing trends in the historiography of Mesopotamian mathematics: an insider’s view. History of Science 34: 1–32, 1996.

    MathSciNet  Google Scholar 

  16. J. Høyrup, Lengths, widths, surfaces: a portrait of Old Babylonian algebra and its kin. Springer, Berlin, 2002.

    Google Scholar 

  17. O. Neugebauer, Mathematische Keilschrift — Texte, 3 vols. (Quellen und Studien zur Geschichte der Mathematik, Astronomie und Physik A3). Springer, Berlin, 1935-37.

    Google Scholar 

  18. O. Neugebauer, A.J. Sachs, Mathematical Cuneiform Texts (American Oriental Series 29). American Oriental Society, New Haven, 1945.

    Google Scholar 

  19. H.J. Nissen, P. Damerow, R.K. Englund, Archaic bookkeeping: early writing and techniques of administration in the ancient Near East. Chicago University Press, Chicago, 1993.

    Google Scholar 

  20. M.A. Powell, The antecedents of Old Babylonian place notation and the early history of Babylonian mathematics. Historia Mathematica 3: 417–439, 1976.

    Article  MathSciNet  MATH  Google Scholar 

  21. M.A. Powell, Masse und Gewichte. In: Reallexikon der Assyriologie, vol. 7, ed. D.O. Edzard, 457–517. de Gruyter, Berlin, 1987-90.

    Google Scholar 

  22. E. Robson, Mesopotamian mathematics, 2100-1600 BC: technical constants in bureaucracy and education (Oxford Editions of Cuneiform Texts 14). Clarendon, Oxford, 1999.

    Google Scholar 

  23. E. Robson, Mesopotamian mathematics: some historical background. In: V.J. Katz (ed.), Using History to Teach Mathematics. Mathematical Association of America, Washington DC, 2000, 149–158, 2000.

    Google Scholar 

  24. E. Robson, Guaranteed genuine Babylonian originals: the Plimpton collection and the early history of mathematical Assyriology. In: C. Wunsch (ed.), Mining the archives: Festschrift for C.B.F. Walker, 245–292. ISLET, Dresden, 2002.

    Google Scholar 

  25. E. Robson, More than metrology: mathematics education in an Old Babylonian scribal school. In: J.M. Steele, A. Imhausen (eds.), Under one sky: mathematics and astronomy in the ancient Near East (Alter Orient und Altes Testament 297), 325–365. Ugarit-Verlag, Münster, 2002.

    Google Scholar 

  26. E. Robson, Mathematical cuneiform tablets in the Ashmolean Museum, Oxford. SCIAMVS—Sources and Commentaries in Exact Sciences 5: 3–65, 2004.

    MathSciNet  Google Scholar 

  27. E. Robson, Literacy, numeracy, and the state in early Mesopotamia. In: K. Lomas, R.D. Whitehouse, J.B. Wilkins (eds.), Literacy and the State in the Ancient Mediterranean. Accordia Research Institute, London, 37–50, 2007.

    Google Scholar 

  28. E. Robson, Mathematics in Ancient Iraq: a Social History. Princeton University Press, 2008.

    Google Scholar 

  29. D. Schmandt-Besserat, Before writing: from counting to cuneiform. University of Texas Press, Austin, 1992.

    Google Scholar 

  30. F. Thureau-Dangin, Textes mathématiques babyloniens (Ex Oriente Lux 1). Brill, Leiden, 1938.

    Google Scholar 

  31. M. van De Mieroop, A history of the ancient Near East, c. 3000–323 BC. Blackwell, Oxford, 2004.

    Google Scholar 

  32. B.L. Van der Waerden, Science awakening, trans. A Dresden. Noordhoff, Groningen, 1954.

    Google Scholar 

  33. N. Veldhuis, How did they learn cuneiform? Tribute/Word List C as an elementary exercise. In: Approaches to Sumerian literature: studies in honor of Stip (H.L.J. Vanstiphout), P. Michalowski, N. Veldhuis (eds.), 181–200. Brill, Leiden, 2006.

    Google Scholar 

  34. N. Veldhuis, Elementary Education at Nippur. Groningen, 1997. 1997

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Italia

About this chapter

Cite this chapter

Chambon, G. (2012). Numeracy, Metrology and Mathematics in Mesopotamia: Social and Cultural Practices. In: Emmer, M. (eds) Imagine Math. Springer, Milano. https://doi.org/10.1007/978-88-470-2427-4_21

Download citation

Publish with us

Policies and ethics