Imagine Math pp 227-239 | Cite as

Numeracy, Metrology and Mathematics in Mesopotamia: Social and Cultural Practices

  • Grégory Chambon


Since the first decipherments of cuneiform writing in the XIX century, academics have been interested in the reconstruction of the ancient Near Eastern numerical and metrological systems as well as abstract ideas and techniques, which were identified, in modern times, as mathematics.


Mathematical Practice Mathematical Text Mathematical Tradition Greek Mathematics Metrological System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    E.M. Bruins, M. Rutten, Textes mathématiques de Suse (Mémoires de la Mission Archéologique en Iran 34). Geuthner, Paris, 1961.Google Scholar
  2. 2.
    E. Cancik-Kirschbaum, G. Chambon, Maßangaben und Zahlvorstellung in archaischen Texten. Altorientalische Forschungen 3: 189–214, 2006.Google Scholar
  3. 3.
    G. Chambon, Numeracy and Metrology. In: K. Radner, E. Robson (eds.), Oxford Handbook of Cuneiform Culture. Oxford, 2011.Google Scholar
  4. 4.
    G. Chambon, E. Robson, Untouchable or unrepeatable? The upper end of the Old Babylonian metrological systems for capacity and area. Iraq 73: 127–147, 2011.Google Scholar
  5. 5.
    D. Charpin, Le clergé d’Ur au siècle d’Hammurabi (XIXe–XVIIIe siècles av.J.-C.) (Hautes É tudes Orientales 22). Droz, Geneva, 1986.Google Scholar
  6. 6.
    D. Charpin, Hammu-rabi de Babylone. PUF, Paris, 2003.Google Scholar
  7. 7.
    P. Damerow, Vorüberlegungen zu einer historischen Epistemologie der Zahlbegriffsentwicklung. In: G. Dux, U. Wenzel (eds.), Der Prozess der Geistesgeschichte. Studien zur ontogenetischen und historischen Entwicklung des Geistes, Frankfurt am Main, 248–322, 1994.Google Scholar
  8. 8.
    J. Friberg, Methods and traditions of Babylonian mathematics: Plimpton 322, Pythagorean triples and the Babylonian triangle parameter equations. Historia Mathematica 8: 277–318, 1981.MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    J. Friberg, Three remarkable texts from ancient Ebla. Vicino Oriente 6: 3–25, 1986.Google Scholar
  10. 10.
    J. Friberg, Mathematik. In: Reallexikon der Assyriologie, vol. 7, ed. D.O. Edzard, 457–517. de Gruyter, Berlin, 1987-90.Google Scholar
  11. 11.
    J. Friberg, Round and almost round numbers in proto-literate metromathematical field texts. Archiv für Orientforschung 44-5: 1–58, 1997-98.Google Scholar
  12. 12.
    J. Friberg, Mathematics at Ur in the Old Babylonian period. Revue d’Assyriologie 94: 97–188, 2000.Google Scholar
  13. 13.
    J.-J. Glassner, The invention of cuneiform: writing in Sumer, trans. Z. Bahrani and M. Van De Mieroop. John Hopkins University Press, Baltimore, 2003.Google Scholar
  14. 14.
    J. Høyrup, Algebra and naive geometry. An investigation of some basic aspects of Old Babylonian mathematical thought. Altorientalische Forschungen 17: 27–69, 262–354, 1990.Google Scholar
  15. 15.
    J. Høyrup, Changing trends in the historiography of Mesopotamian mathematics: an insider’s view. History of Science 34: 1–32, 1996.MathSciNetGoogle Scholar
  16. 16.
    J. Høyrup, Lengths, widths, surfaces: a portrait of Old Babylonian algebra and its kin. Springer, Berlin, 2002.Google Scholar
  17. 17.
    O. Neugebauer, Mathematische Keilschrift — Texte, 3 vols. (Quellen und Studien zur Geschichte der Mathematik, Astronomie und Physik A3). Springer, Berlin, 1935-37.Google Scholar
  18. 18.
    O. Neugebauer, A.J. Sachs, Mathematical Cuneiform Texts (American Oriental Series 29). American Oriental Society, New Haven, 1945.Google Scholar
  19. 19.
    H.J. Nissen, P. Damerow, R.K. Englund, Archaic bookkeeping: early writing and techniques of administration in the ancient Near East. Chicago University Press, Chicago, 1993.Google Scholar
  20. 20.
    M.A. Powell, The antecedents of Old Babylonian place notation and the early history of Babylonian mathematics. Historia Mathematica 3: 417–439, 1976.MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    M.A. Powell, Masse und Gewichte. In: Reallexikon der Assyriologie, vol. 7, ed. D.O. Edzard, 457–517. de Gruyter, Berlin, 1987-90.Google Scholar
  22. 22.
    E. Robson, Mesopotamian mathematics, 2100-1600 BC: technical constants in bureaucracy and education (Oxford Editions of Cuneiform Texts 14). Clarendon, Oxford, 1999.Google Scholar
  23. 23.
    E. Robson, Mesopotamian mathematics: some historical background. In: V.J. Katz (ed.), Using History to Teach Mathematics. Mathematical Association of America, Washington DC, 2000, 149–158, 2000.Google Scholar
  24. 24.
    E. Robson, Guaranteed genuine Babylonian originals: the Plimpton collection and the early history of mathematical Assyriology. In: C. Wunsch (ed.), Mining the archives: Festschrift for C.B.F. Walker, 245–292. ISLET, Dresden, 2002.Google Scholar
  25. 25.
    E. Robson, More than metrology: mathematics education in an Old Babylonian scribal school. In: J.M. Steele, A. Imhausen (eds.), Under one sky: mathematics and astronomy in the ancient Near East (Alter Orient und Altes Testament 297), 325–365. Ugarit-Verlag, Münster, 2002.Google Scholar
  26. 26.
    E. Robson, Mathematical cuneiform tablets in the Ashmolean Museum, Oxford. SCIAMVS—Sources and Commentaries in Exact Sciences 5: 3–65, 2004.MathSciNetGoogle Scholar
  27. 27.
    E. Robson, Literacy, numeracy, and the state in early Mesopotamia. In: K. Lomas, R.D. Whitehouse, J.B. Wilkins (eds.), Literacy and the State in the Ancient Mediterranean. Accordia Research Institute, London, 37–50, 2007.Google Scholar
  28. 28.
    E. Robson, Mathematics in Ancient Iraq: a Social History. Princeton University Press, 2008.Google Scholar
  29. 29.
    D. Schmandt-Besserat, Before writing: from counting to cuneiform. University of Texas Press, Austin, 1992.Google Scholar
  30. 30.
    F. Thureau-Dangin, Textes mathématiques babyloniens (Ex Oriente Lux 1). Brill, Leiden, 1938.Google Scholar
  31. 31.
    M. van De Mieroop, A history of the ancient Near East, c. 3000–323 BC. Blackwell, Oxford, 2004.Google Scholar
  32. 32.
    B.L. Van der Waerden, Science awakening, trans. A Dresden. Noordhoff, Groningen, 1954.Google Scholar
  33. 33.
    N. Veldhuis, How did they learn cuneiform? Tribute/Word List C as an elementary exercise. In: Approaches to Sumerian literature: studies in honor of Stip (H.L.J. Vanstiphout), P. Michalowski, N. Veldhuis (eds.), 181–200. Brill, Leiden, 2006.Google Scholar
  34. 34.
    N. Veldhuis, Elementary Education at Nippur. Groningen, 1997. 1997Google Scholar

Copyright information

© Springer-Verlag Italia 2012

Authors and Affiliations

  • Grégory Chambon
    • 1
  1. 1.Université de Bretagne OccidentaleBrestFrance

Personalised recommendations