Imagine Math pp 211-224 | Cite as

Connecting Ventricular Assist Devices to the Aorta: A Numerical Model

  • Jean Bonnemain
  • Simone Deparis
  • Alfio Quarteroni


Mechanical circulatory support,in particular ventricular assist devices(VAD),has been recently proposed as an alternative to transplantation in the treatment of terminal heart failure in the context of the lack of donors and raising number of patients on the waiting list. Although these systems have proved their efficiency through a rigorous patient selection, the complication rate remains high and experience shows that many of them are related to haemodynamic modifications due to VAD implantation. Furthermore, VAD themselves have been widely studied, while the flow near the anastomosis VAD-aorta is still not well-known, although many complications arise at this site. We present here the mathematical settings and some preliminary results of a numerical model of the anastomosis between the outflow cannula of left ventricular assist devices (LVAD) and the aorta.


Particle Image Velocimetry Left Ventricular Assist Device Ventricular Assist Device Arbitrary Lagrangian Eulerian Mechanical Circulatory Support 


  1. 1.
    A. Clegg, D. Scott, E. Loveman, J. Colquitt, P. Royle, J. Bryant, Clinical and cost-effectiveness of left ventricular assist devices as destination therapy for people with end-stage heart failure: a systematic review and economic evaluation. International journal of technology assessment in health care 23(2), 261–268, 2007.CrossRefGoogle Scholar
  2. 2.
    P. Crosetto, S. Deparis, G. Fourestey, A. Quarteroni, Parallel algorithms for fluid-structure interaction problems in haemodynamics 33(4), 1598–1622, 2011.MathSciNetMATHGoogle Scholar
  3. 3.
    P. Crosetto, P. Reymond, S. Deparis, D. Kontaxakis, N. Stergiopulos, A. Quarteroni, Fluidstructure interaction simulation of aortic blood flow. Computers and Fluids 43(1), 46–57, 2011.MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    K. Dickstein, A. Cohen-Solal, G. Filippatos, J.J.V. McMurray, P. Ponikowski, P.A. Poole-Wilson, A. Strömberg, D.J. van Veldhuisen, D. Atar, A.W. Hoes, A. Keren, A. Mebazaa, M. Nieminen, S.G. Priori, K. Swedberg, E.C. for Practice Guidelines, A. Vahanian, J. Camm, R.D. Caterina, V. Dean, K. Dickstein, G. Filippatos, C. Funck-Brentano, I. Hellemans, S.D. Kristensen, K. McGregor, U. Sechtem, S. Silber, M. Tendera, P. Widimsky, J.L. Zamorano, D. Reviewers, M. Tendera, A. Auricchio, J. Bax, M. Böhm, U. Corrà, P.D. Bella, P.M. Elliott, F. Follath, M. Gheorghiade, Y. Hasin, A. Hernborg, T. Jaarsma, M. Komajda, R. Kornowski, M. Piepoli, B. Prendergast, L. Tavazzi, J.L. Vachiery, F.W.A. Verheugt, J.L. Zamorano, F. Zannad, Esc guidelines for the diagnosis and treatment of acute and chronic heart failure 2008. Eur Heart J 29(19), 2388–2442, 2008.CrossRefGoogle Scholar
  5. 5.
    L. Formaggia, D. Lamponi, A. Quarteroni, One-dimensional models for blood flow in arteries. Journal of Engineering Mathematics 47, 251–276, 2003.MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    L. Formaggia, A. Quarteroni, A. Veneziani (eds.), Cardiovascular Mathematics: Modeling and Simulation of the Circulatory System, Modeling, Simulation and Applications, vol. 1. Springer, Milan, 2009.Google Scholar
  7. 7.
    R. Gordon, B. Quagliarello, F. Lowy, Ventricular assist device-related infections. The Lancet Infectious Diseases 6(7), 426–437, 2006.CrossRefGoogle Scholar
  8. 8.
    M. Jessup, S. Brozena, Heart failure. N Engl J Med 348(20), 2007–2018, 2003.CrossRefGoogle Scholar
  9. 9.
    G.J. Langewouters, Visco-elasticity of the human aorta in vitro in relation to pressure and age. Ph.D. thesis, Free University, Amsterdam, 1982.Google Scholar
  10. 10.
    D. Lloyd-Jones, R. Adams, M. Carnethon, G.D. Simone, T.B. Ferguson, K. Flegal, E. Ford, K. Furie, A. Go, K. Greenlund, N. Haase, S. Hailpern, M. Ho, V. Howard, B. Kissela, S. Kittner, D. Lackland, L. Lisabeth, A. Marelli, M. Mcdermott, J. Meigs, D. Mozaffarian, G. Nichol, C. O’donnell, V. Roger, W. Rosamond, R. Sacco, P. Sorlie, R. Stafford, J. Steinberger, T. Thom, S. Wasserthiel-Smoller, N. Wong, J. Wylie-Rosett, Y. Hong, Heart disease and stroke statistics-2009 update: A report from the american heart association statistics committee and stroke statistics subcommittee. Circulation 119(3), e21–e181, 2009.CrossRefGoogle Scholar
  11. 11.
    A.C.I. Malossi, P.J. Blanco, S. Deparis, A two-level time step technique for the partitioned solution of one-dimensional arterial networks, 2011. SubmittedGoogle Scholar
  12. 12.
    A.C.I. Malossi, P.J. Blanco, S. Deparis, A. Quarteroni, Algorithms for the partitioned solution of weakly coupled fluid models for cardiovascular flows. International Journal for Numerical Methods in Biomedical Engineering, 2011Google Scholar
  13. 13.
    K. May-Newman, B. Hillen, C. Sironda, W. Dembitsky, Effect of lvad outflow conduit insertion angle on flow through the native aorta. Journal of Medical Engineering & Technology 28(3), 105-109, 2004.Google Scholar
  14. 14.
    J. Mcmurray, M. Pfeffer, Heart failure. The Lancet 365(9474), 1877–1889, 2005.CrossRefGoogle Scholar
  15. 15.
    R. Medvitz, J. Kreider, K. Manning, A. Fontaine, S. Deutsch, E. Paterson, Development and validation of a computational fluid dynamics methodology for simulation of pulsatile left ventricular assist devices. ASAIO Journal 53(2), 122–131, 2007.CrossRefGoogle Scholar
  16. 16.
    F. Nobile, Numerical approximation of fluid-structure interaction problems with application to haemodynamics. Ph.D. thesis, École Polytechnique Fédérale de Lausanne, 2001.Google Scholar
  17. 17.
    T. Passerini, M. de Luca, L. Formaggia, A. Quarteroni, A. Veneziani, A 3D/1D geometrical multiscale model of cerebral vasculature. Journal of Engineering Mathematics 64(4), 319–330, 2009.MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    A. Quarteroni, A. Veneziani, Analysis of a geometrical multiscale model based on the coupling of PDE’s and ODE’s for blood flow simulations. Multiscale Modeling & Simulation 1(2), 173–195, 2003.MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    P. Reymond, F. Merenda, F. Perren, D. Rufenacht, N. Stergiopulos, Validation of a one-dimensional model of the systemic arterial tree. Am J Physiol Heart Circ Physiol 297(1), H208–H222, 2009.CrossRefGoogle Scholar
  20. 20.
    E.A. Rose, A.C. Gelijns, A.J. Moskowitz, D.F. Heitjan, L.W. Stevenson, W. Dembitsky, J.W. Long, D.D. Ascheim, A.R. Tierney, R.G Levitan, J.T. Watson, P. Meier, N.S. Ronan, P.A. Shapiro, R.M. Lazar, L.W. Miller, L. Gupta, O.H. Frazier, P. Desvigne-Nickens, M.C. Oz, V.L. Poirier, Randomized evaluation of Mechanical Assistance for the Treatment of Congestive Heart Failure (REMATCH) Study Group, R.E.: Long-term mechanical left ventricular assistance for end-stage heart failure. N Engl J Med 345(20), 1435–1443, 2001.CrossRefGoogle Scholar
  21. 21.
    M. Slaughter, J. Rogers, C. Milano, S. Russell, J. Conte, D. Feldman, B. Sun, A. Tatooles, Delgado III, R., Long, J., Wozniak, T., Ghumman, W., Farrar, D., Frazier, O.: Advanced heart failure treated with continuous-flow left ventricular assist device. The New England journal of medicine 361(23), 2241–2251, 2009.CrossRefGoogle Scholar
  22. 22.
    L. Vincent, P. Soille, Watersheds in digital spaces: An efficient algorithm based on immersion simulations. IEEE Transactions on Pattern Analysis and Machine Intelligence 13, 583–598, 1991.CrossRefGoogle Scholar
  23. 23.
    Y. Zhang, Z. Zhan, X. Gui, H. Sun, H. Zhang, Z. Zheng, J. Zhou, X. Zhu, G. Li, S. Hu, D. Jin, Design optimization of an axial blood pump with computational fluid dynamics. ASAIO J 54(2), 150–155, 2008.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2012

Authors and Affiliations

  • Jean Bonnemain
    • 1
    • 2
  • Simone Deparis
    • 1
  • Alfio Quarteroni
    • 1
    • 3
  1. 1.CMCS - MATHICSE - EPFLLausanneSwitzerland
  2. 2.Cardiovascular Surgery DepartmentCHUVLausanneSwitzerland
  3. 3.MOXPolitecnico di MilanoMilanoItaly

Personalised recommendations