Mitochondrial and Non-mitochondrial Studies of ATP Synthesis


Energy is required to perform any kind of mechanical work. In living organisms, the energy for all biological functions is provided chemically by the hydrolysis of adenosine triphosphate (ATP). ATP supplies the energy required to synthesize cellular components and to maintain cell viability, by donating one or two phosphate groups, leaving adenosine diphosphate (ADP) or adenosine monophosphate (AMP), respectively. However, energy storage in the form of ATP is limited such that ATP must be resynthesized continuously in order to meet cellular energy demands. The generation or replenishment of ATP depends upon key metabolic pathways, glycolysis, glycogenolysis, and oxidative phosphorylation, which interact to regulate the rate of ATP metabolism and to direct cellular bioenergetics toward a defined homeostasis.


Muscle Glycogen Magnetization Transfer Magnetic Resonance Spec Anaerobic Energy Production Glutamate Pool 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    De Graaf RA (2007) In vivo NMR spectroscopy: principles and techniques. Wiley, Chichester, West Sussex UKCrossRefGoogle Scholar
  2. 2.
    Perseghin G, Lattuada G, Danna M, Sereni L. P, Maffi P, De Cobelli F, Battezzati A, Secchi A, Del Maschio A, and Luzi L (2003) Insulin resistance, intramyocellular lipid content, and plasma adiponectin in patients with type 1 diabetes. Am J Physiol Endocrinol Metab 285(6):E1174–1181Google Scholar
  3. 3.
    Hsu AC, Dawson MJ (2000) Accuracy of 1H and 31P MRS analyses of lactate in skeletal muscle. Magn Reson Med 44(3):418–426PubMedCrossRefGoogle Scholar
  4. 4.
    Kruiskamp M.J, de Graaf RA, van Vliet G, Nicolay K (1999) Magnetic coupling of creatine/phosphocreatine protons in rat skeletal muscle, as studied by (1)H-magnetization transfer MRS. Magn Reson Med 42(4):665–672PubMedCrossRefGoogle Scholar
  5. 5.
    Nicolay K, Braun KP, Graaf RA, Dijkhuizen RM, Kruiskamp MJ (2001) Diffusion NMR spectroscopy, NMR Biomed, 14(2):94–111PubMedCrossRefGoogle Scholar
  6. 6.
    Richardson RS, Duteil S, Wary C, Wray D.W, Hoff J, Carlier PG (2006) Human skeletal muscle intracellular oxygenation: the impact of ambient oxygen availability. J Physiol 571(Pt 2):415–424PubMedGoogle Scholar
  7. 7.
    Carlier PG, Bertoldi D, Baligand C, Wary C, Fromes Y (2006) Muscle blood flow and oxygenation measured by NMR imaging and spectroscopy. NMR Biomed 19(7):954–967PubMedCrossRefGoogle Scholar
  8. 8.
    Jue T, Rothman DL, Shulman GI, Tavitian BA, DeFronzo R. A, Shulman RG (1989) Direct observation of glycogen synthesis in human muscle with 13C NMR. Proc Natl Acad Sci USA 86(12):4489–4891PubMedCrossRefGoogle Scholar
  9. 9.
    Cline GW, Vidal-Puig AJ, Dufour S, Cadman KS, Lowell BB, and Shulman GI (2001) In vivo effects of uncoupling protein-3 gene disruption on mitochondrial energy metabolism. J Biol Chem 276(23):20240–20244PubMedCrossRefGoogle Scholar
  10. 10.
    Jucker BM, Dufour S, Ren J, Cao X, Previs SF, Underhill B, Cadman KS, Shulman GI (2000) Assessment of mitochondrial energy coupling in vivo by 13C/31P NMR. Proc Natl Acad Sci USA 97(12):6880–6884PubMedCrossRefGoogle Scholar
  11. 11.
    Hoult DI, Busby SJ, Gadian DG, Radda GK, Richards RE, Seeley PJ (1974) Observation of tissue metabolites using 31P nuclear magnetic resonance. Nature 252(5481):285–287PubMedCrossRefGoogle Scholar
  12. 12.
    Kemp GJ, Radda GK (1994) Quantitative interpretation of bioenergetic data from 31P and 1H magnetic resonance spectroscopic studies of skeletal muscle: an analytical review. Magn Reson Q 10(1):43–63PubMedGoogle Scholar
  13. 13.
    Kemp GJ, Taylor DJ, Thompson CH, Hands LJ, Rajagopalan B, Styles P, Radda GK (1993) Quantitative analysis by 31P magnetic resonance spectroscopy of abnormal mitochondrial oxidation in skeletal muscle during recovery from exercise. NMR Biomed 6(5):302–310PubMedCrossRefGoogle Scholar
  14. 14.
    Chance B, Leigh JS, Clark BJ, Maris J, Kent J, Nioka S, Smith D (1985) Control of oxidative metabolism and oxygen delivery in human skeletal muscle: a steady-state analysis of the work/energy cost transfer function. Proc Natl Acad Sci USA 82(24):8384–8388PubMedCrossRefGoogle Scholar
  15. 15.
    Jeneson JA, Wiseman RW, Kushmerick MJ (1997) Non-invasive quantitative 31P MRS assay of mitochondrial function in skeletal muscle in situ. Mol Cell Biochem 174(1–2):17–22PubMedCrossRefGoogle Scholar
  16. 16.
    Lanza IR, Wigmore DM, Befroy DE, Kent-Braun JA (2006) In vivo ATP production during free-flow and ischaemic muscle contractions in humans. J Physiol 577(Pt 1):353–367PubMedCrossRefGoogle Scholar
  17. 17.
    Drost MR, Heemskerk AM, Strijkers GJ, Dekkers EC, van Kranenburg G, Nicolay K (2003) An MR-compatible device for the in situ assessment of isometric contractile performance of mouse hind-limb ankle flexors. Pflugers Arch 447(3):371–375PubMedCrossRefGoogle Scholar
  18. 18.
    Thompson CH, Kemp GJ, Sanderson AL, Radda GK (1995) Skeletal muscle mitochondrial function studied by kinetic analysis of postexercise phosphocreatine resynthesis. J Appl Physiol 78(6):2131–2139PubMedGoogle Scholar
  19. 19.
    Walter G, Vandenborne K, Elliott M, Leigh JS (1999) In vivo ATP synthesis rates in single human muscles during high intensity exercise. J Physiol 519 Pt 3, 901–910PubMedCrossRefGoogle Scholar
  20. 20.
    Conley K. E, Blei M. L, Richards T. L, Kushmerick M. J, and Jubrias S. A, 1997, Activation of glycolysis in human muscle in vivo, Am J Physiol, 273(1 Pt 1):C306–315Google Scholar
  21. 21.
    Shulman RG, Rothman DL (2001) The glycogen shunt in exercising muscle: A role for glycogen in muscle energetics and fatigue, Proc Natl Acad Sci USA 98(2):457–461PubMedCrossRefGoogle Scholar
  22. 22.
    Codella R (2008) In vivo magnetic resonance spectroscopy studies of muscle mitochondrial function in transgenic mice. Ph.D. Thesis, University of Milan and Yale UniversityGoogle Scholar
  23. 23.
    Norris DG (2001) The effects of microscopic tissue parameters on the diffusion weighted magnetic resonance imaging experiment. NMR Biomed 14:77–93PubMedCrossRefGoogle Scholar
  24. 24.
    Boesch C, Machann J, Vermathen P, and Schick F (2006) Role of proton MR for the study of muscle lipid metabolism. NMR Biomed 19:968–988PubMedCrossRefGoogle Scholar
  25. 25.
    Petersen KF, Befroy D et al (2003) Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science 300:1140–1142PubMedCrossRefGoogle Scholar
  26. 26.
    Forsen S, and Hoffman RA (1963) A New Method for Study of Moderately Rapid Chemical Exchange Rates Employing Nuclear Magnetic Double Resonance. Acta Chemica Scandinavica 17:1787–1788CrossRefGoogle Scholar
  27. 27.
    Bangsbo J, Gollnick PD, et al (1990) Anaerobic energy production and O2 deficit-debt relationship during exhaustive exercise in humans. J Physiol 422:539–559PubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia 2012

Authors and Affiliations

  1. 1.Department of Sport Sciences, Nutrition and HealthUniversity of MilanMilanItaly

Personalised recommendations