Advertisement

The Baboon as a Primate Model To Study the Physiology and Metabolic Effects of Exercise

  • Francesca Casiraghi
  • Alberto Omar Chavez
  • Nicholas Musi
  • Franco Folli

Abstract

Non-human primates are invaluable models for the study of human diseases due to their close genetic, anatomical, and physiological similarities with our own species. They are extensively used in biomedical research aimed at elucidating the molecular mechanisms of complex chronic diseases, including but not limited to osteoporosis, obesity, type 2 diabetes, and atherosclerosis [1].

Keywords

Physical Activity Nonhuman Primate Indirect Calorimetry Nonhuman Primate Model Energy Expenditure Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Carlsson HE, Schapiro SJ, Farah I, Hau J (2004) Use of primates in research: a global overview. Am J Primatol 63(4):225–37PubMedCrossRefGoogle Scholar
  2. 2.
    Chavez AO, Lopez-Alvarenga JC, Tejero ME, Triplitt C, Bastarrachea RA, Sriwijitkamol A, et al (2008) Physiological and molecular determinants of insulin action in the baboon. Diabetes 57(4):899–908PubMedCrossRefGoogle Scholar
  3. 3.
    Comuzzie AG, Cole SA, Martin L, Carey KD, Mahaney MC, Blangero J, et al (2003) The baboon as a nonhuman primate model for the study of the genetics of obesity. Obes Res 11(1):75–80PubMedCrossRefGoogle Scholar
  4. 4.
    VandeBerg JL, Williams-Blangero S, Tardif SD (2009) The baboon in biomedical research. Springer, New YorkCrossRefGoogle Scholar
  5. 5.
    Garcia C, Rosetta L, Ancel A, Lee PC, Caloin M (2004) Kinetics of stable isotope and body composition in olive baboons (Papio anubis) estimated by deuterium dilution space: a pilot study. J Med Primatol 33(3):146–51PubMedCrossRefGoogle Scholar
  6. 6.
    Chavez AO, Gastaldelli A, Guardado-Mendoza R, Lopez-Alvarenga JC, Leland MM, Tejero ME, et al (2009) Predictive models of insulin resistance derived from simple morphometric and biochemical indices related to obesity and the metabolic syndrome in baboons. Cardiovasc Diabetol 8:22PubMedCrossRefGoogle Scholar
  7. 7.
    Rogers J, Hixson JE (1997) Baboons as an animal model for genetic studies of common human disease. Am J Hum Genet 61(3):489–93PubMedCrossRefGoogle Scholar
  8. 8.
    Aufdemorte TB, Fox WC, Miller D, Buffum K, Holt GR, Carey KD. (1993) A non-human primate model for the study of osteoporosis and oral bone loss. Bone 14(3):581–6PubMedCrossRefGoogle Scholar
  9. 9.
    Colman RJ, Anderson RM, Johnson SC, Kastman EK, Kosmatka KJ, Beasley TM, et al. (2009) Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 10:325(5937):201–4CrossRefGoogle Scholar
  10. 10.
    Barnett A, Allsworth J, Jameson K, Mann R (2007) A review of the effects of antihyperglycaemic agents on body weight: the potential of incretin targeted therapies. Curr Med Res Opin 23(7):1493–507PubMedCrossRefGoogle Scholar
  11. 11.
    Sriwijitkamol A, Coletta DK, Wajcberg E, Balbontin GB, Reyna SM, Barrientes J, et al (2007) Effect of acute exercise on AMPK signaling in skeletal muscle of subjects with type 2 diabetes: a time-course and dose-response study. Diabetes 56(3):836–48PubMedCrossRefGoogle Scholar
  12. 12.
    Hunnell NA, Rockcastle NJ, McCormick KN, Sinko LK, Sullivan EL, Cameron JL (2007) Physical activity of adult female rhesus monkeys (Macaca mulatta) across the menstrual cycle. Am J Physiol Endocrinol Metab 292(6):E1520–5PubMedCrossRefGoogle Scholar
  13. 13.
    Papailiou A, Sullivan E, Cameron JL (2008) Behaviors in rhesus monkeys (Macaca mulatta) associated with activity counts measured by accelerometer. Am J Primatol 70(2):185–90PubMedCrossRefGoogle Scholar
  14. 14.
    Cefalu WT (2006) Animal models of type 2 diabetes: clinical presentation and pathophysiological relevance to the human condition. ILAR J 47(3):186–98PubMedGoogle Scholar
  15. 15.
    Wagner JE, Kavanagh K, Ward GM, Auerbach BJ, Harwood HJ, Jr., Kaplan JR (2006) Old world nonhuman primate models of type 2 diabetes mellitus. ILAR J 47(3):259–71PubMedGoogle Scholar
  16. 16.
    Kaplan JR, Wagner JD (2006) Type 2 diabetes-an introduction to the development and use of animal models. ILAR J 47(3):181–5PubMedGoogle Scholar
  17. 17.
    Kahn CR, Folli F ( 1993) Molecular determinants of insulin action. Horm Res 39 Suppl 3:93–101PubMedCrossRefGoogle Scholar
  18. 18.
    Biddinger SB, Kahn CR (2006) From mice to men: insights into the insulin resistance syndromes. Annu Rev Physiol 68:123–58PubMedCrossRefGoogle Scholar
  19. 19.
    Guardado-Mendoza R, Davalli AM, Chavez AO, Hubbard GB, Dick EJ, Majluf-Cruz A, et al (2009) Pancreatic islet amyloidosis, beta-cell apoptosis, and alpha-cell proliferation are determinants of islet remodeling in type-2 diabetic baboons. Proc Natl Acad Sci USA 18;106(33):13992–7PubMedCrossRefGoogle Scholar
  20. 20.
    Guardado-Mendoza R, Dick EJ, Jr., Jimenez-Ceja LM, Davalli A, Chavez AO, Folli F, et al (2009) Spontaneous pathology of the baboon endocrine system. J Med Primatol 38(6):383–9PubMedCrossRefGoogle Scholar
  21. 21.
    Hubbard GB, Steele KE, Davis KJ, 3rd, Leland MM (2002) Spontaneous pancreatic islet amyloidosis in 40 baboons. J Med Primatol 31(2):84–90PubMedCrossRefGoogle Scholar
  22. 22.
    Cole SA, Martin LJ, Peebles KW, Leland MM, Rice K, VandeBerg JL, et al (2003) Genetics of leptin expression in baboons. Int J Obes Relat Metab Disord 27(7):778–83PubMedCrossRefGoogle Scholar
  23. 23.
    Hull RL, Westermark GT, Westermark P, Kahn SE (2004) Islet amyloid: a critical entity in the pathogenesis of type 2 diabetes. J Clin Endocrinol Metab 89(8):3629–43PubMedCrossRefGoogle Scholar
  24. 24.
    Ortmeyer HK, Sajan MP, Miura A, Kanoh Y, Rivas J, Li Y, et al (2011) Insulin signaling and insulin sensitizing in muscle and liver of obese monkeys: PPARgamma agonist improves defective activation of atypical protein kinase C. Antioxid Redox Signal 14(2):207–19PubMedCrossRefGoogle Scholar
  25. 25.
    Donnelly JE, Blair SN, Jakicic JM, Manore MM, Rankin JW, Smith BK (2009) American College of Sports Medicine Position Stand. Appropriate physical activity intervention strategies for weight loss and prevention of weight regain for adults. Med Sci Sports Exerc 41(2):459–71PubMedCrossRefGoogle Scholar
  26. 26.
    American Diabetes Association (2009) Standards of medical care in diabetes 2009. Diabetes Care 32 Suppl 1:S13–61CrossRefGoogle Scholar
  27. 27.
    Mann TM, Williams KE, Pearce PC, Scott EA.(2005) A novel method for activity monitoring in small non-human primates. Lab Anim 39(2):169–77PubMedCrossRefGoogle Scholar
  28. 28.
    Sullivan EL, Koegler FH, Cameron JL (2006) Individual differences in physical activity are closely associated with changes in body weight in adult female rhesus monkeys (Macaca mulatta). Am J Physiol Regul Integr Comp Physiol 291(3):R633–42PubMedCrossRefGoogle Scholar
  29. 29.
    Talan MI, Engel BT (1986) Learned control of heart rate during dynamic exercise in nonhuman primates. J Appl Physiol 61(2):545–53PubMedGoogle Scholar
  30. 30.
    Hohimer AR, Hales JR, Rowell LB, Smith OA (1983) Regional distribution of blood flow during mild dynamic leg exercise in the baboon. J Appl Physiol 55(4):1173–7PubMedGoogle Scholar
  31. 31.
    Hohimer AR, Smith OA (1979) Decreased renal blood flow in the baboon during mild dynamic leg exercise. Am J Physiol 236(1):H141–50PubMedGoogle Scholar
  32. 32.
    Dempsey DT, Crosby LO, Mullen JL (1986) Indirect calorimetry in chair-adapted primates. JPEN J Parenter Enteral Nutr 10(3):324–7PubMedCrossRefGoogle Scholar
  33. 33.
    Williams NI (2003) Lessons from experimental disruptions of the menstrual cycle in humans and monkeys. Med Sci Sports Exerc 35(9):1564–72PubMedCrossRefGoogle Scholar
  34. 34.
    Rising R, Signaevsky M, Rosenblum LA, Kral JG, Lifshitz F (2008) Energy expenditure in chow-fed female non-human primates of various weights. Nutr Metab (Lond). 5:32CrossRefGoogle Scholar
  35. 35.
    Edgerton VR, Barnard RJ, Peter JB, Gillespie CA, Simpson DR (1972) Overloaded skeletal muscles of a nonhuman primate (Galago senegalensis). Exp Neurol 37(2):322–39PubMedCrossRefGoogle Scholar
  36. 36.
    Rhyu IJ, Bytheway JA, Kohler SJ, Lange H, Lee KJ, Boklewski J, et al (2010) Effects of aerobic exercise training on cognitive function and cortical vascularity in monkeys. Neuroscience 167(4):1239–48PubMedCrossRefGoogle Scholar
  37. 37.
    Ivy JL, Coelho AM, Jr., Easley SP, Carley KD, Rogers WR, Shade RE (1994) Training adaptations of baboons to light and moderate treadmill exercise. J Med Primatol 23(8):442–9PubMedCrossRefGoogle Scholar
  38. 38.
    Bourrin S, Zerath E, Vico L, Milhaud C, Alexandre C (1992) Bone mass and bone cellular variations after five months of physical training in rhesus monkeys: histomorphometric study. Calcif Tissue Int 50(5):404–10CrossRefGoogle Scholar
  39. 39.
    Zerath E, Milhaud C, Nogues C (1993) The effects of a 5-month physical training on iliac bone morphology in monkeys. Eur J Appl Physiol Occup Physiol 67(1):1–6PubMedCrossRefGoogle Scholar
  40. 40.
    Ingram DK (2000) Age-related decline in physical activity: generalization to nonhumans. Med Sci Sports Exerc 32(9):1623–9PubMedCrossRefGoogle Scholar
  41. 41.
    Sallis JF (2000) Age-related decline in physical activity: a synthesis of human and animal studies. Med Sci Sports Exerc 32(9):1598–600PubMedCrossRefGoogle Scholar
  42. 42.
    Hales JR, Rowell LB, King RB.(1979) Regional distribution of blood flow in awake heat-stressed baboons. Am J Physiol 237(6):H705–12Google Scholar
  43. 43.
    Vatner SF (1978) Effects of exercise and excitement on mesenteric and renal dynamics in conscious, unrestrained baboons. Am J Physiol 234(2):H210–4Google Scholar
  44. 44.
    Malavolti M, Pietrobelli A, Dugoni M, Poli M, Romagnoli E, De Cristofaro P, et al (2007) A new device for measuring resting energy expenditure (REE) in healthy subjects. Nutr Metab Cardiovasc Dis 17(5):338–43PubMedCrossRefGoogle Scholar
  45. 45.
    Berntsen S, Hageberg R, Aandstad A, Mowinckel P, Anderssen SA, Carlsen KH, et al (2008) Validity of physical activity monitors in adults participating in free-living activities. Br J Sports Med 44:657–664PubMedCrossRefGoogle Scholar
  46. 46.
    St-Onge M, Mignault D, Allison DB, Rabasa-Lhoret R (2007) Evaluation of a portable device to measure daily energy expenditure in free-living adults. Am J Clin Nutr 85(3):742–9PubMedGoogle Scholar
  47. 47.
    Fruin ML, Rankin JW (2004) Validity of a multi-sensor armband in estimating rest and exercise energy expenditure. Med Sci Sports Exerc 36(6):1063–9PubMedCrossRefGoogle Scholar
  48. 48.
    Jakicic JM, Marcus M, Gallagher KI, Randall C, Thomas E, Goss FL, et al (2004) Evaluation of the SenseWear Pro Armband to assess energy expenditure during exercise. Med Sci Sports Exerc 36(5):897–904PubMedCrossRefGoogle Scholar
  49. 49.
    King GA, Torres N, Potter C, Brooks TJ, Coleman KJ (2004) Comparison of activity monitors to estimate energy cost of treadmill exercise. Med Sci Sports Exerc 36(7):1244–51PubMedCrossRefGoogle Scholar
  50. 50.
    Bertoli S, Posata A, Battezzati A, Spadafranca A, Testolin G, Bedogni G (2008) Poor agreement between a portable armband and indirect calorimetry in the assessment of resting energy expenditure. Clin Nutr 27(2):307–10PubMedCrossRefGoogle Scholar
  51. 51.
    Calabro MA, Welk GJ, Eisenmann JC (2009) Validation of the SenseWear Pro Armband algorithms in children. Med Sci Sports Exerc 41(9):1714–20PubMedCrossRefGoogle Scholar
  52. 52.
    Arvidsson D, Slinde F, Hulthen L (2009) Free-living energy expenditure in children using multi-sensor activity monitors. Clin Nutr 28(3):305–12PubMedCrossRefGoogle Scholar
  53. 53.
    Arvidsson D, Slinde F, Larsson S, Hulthen L (2007) Energy cost of physical activities in children: validation of SenseWear Armband. Med Sci Sports Exerc 39(11):2076–84PubMedCrossRefGoogle Scholar
  54. 54.
    Arvidsson D, Slinde F, Larsson S, Hulthen L (2009)Energy cost in children assessed by multisensor activity monitors. Med Sci Sports Exerc 41(3):603–11PubMedCrossRefGoogle Scholar
  55. 55.
    Ridley K, Olds TS (2008) Assigning energy costs to activities in children: a review and synthesis. Med Sci Sports Exerc 40(8):1439–46PubMedCrossRefGoogle Scholar
  56. 56.
    Dorminy CA, Choi L, Akohoue SA, Chen KY, Buchowski MS (2008) Validity of a multisensor armband in estimating 24-h energy expenditure in children. Med Sci Sports Exerc 40(4):699–706PubMedCrossRefGoogle Scholar
  57. 57.
    Papazoglou D, Augello G, Tagliaferri M, Savia G, Marzullo P, Maltezos E, et al (2006) Evaluation of a multisensor armband in estimating energy expenditure in obese individuals. Obesity 14(12):2217–23PubMedCrossRefGoogle Scholar
  58. 58.
    Cereda E, Pezzoli G, Barichella M (2009) Role of an electronic armband in motor function monitoring in patients with Parkinson’s disease. Nutrition 26(2):240–2PubMedCrossRefGoogle Scholar
  59. 59.
    Cereda E, Turrini M, Ciapanna D, Marbello L, Pietrobelli A, Corradi E (2007) Assessing energy expenditure in cancer patients: a pilot validation of a new wearable device. J Parenter Enteral Nutr 31(6):502–7CrossRefGoogle Scholar
  60. 60.
    Dwyer TJ, Alison JA, McKeough ZJ, Elkins MR, Bye PT (2009) Evaluation of the SenseWear activity monitor during exercise in cystic fibrosis and in health. Respir Med 103(10):1511–7PubMedCrossRefGoogle Scholar
  61. 61.
    Mafra D, Deleaval P, Teta D, Cleaud C, Perrot MJ, Rognon S, et al (2009) New measurements of energy expenditure and physical activity in chronic kidney disease. J Ren Nutr 19(1):16–9PubMedCrossRefGoogle Scholar
  62. 62.
    Coelho AM, Jr., Carey KD (1990) A social tethering system for nonhuman primates used in laboratory research. Lab Anim Sci 40(4):388–94PubMedGoogle Scholar
  63. 63.
    Gleeson M, McFarlin B, Flynn M.(2006) Exercise and Toll-like receptors. Exerc Immunol Rev 12:34–53PubMedGoogle Scholar
  64. 64.
    Tsukumo DM, Carvalho-Filho MA, Carvalheira JB, Prada PO, Hirabara SM, Schenka AA, et al (2007) Loss-of-function mutation in Toll-like receptor 4 prevents diet-induced obesity and insulin resistance. Diabetes 56(8):1986–98PubMedCrossRefGoogle Scholar
  65. 65.
    Prada PO, Ropelle ER, Mourao RH, de Souza CT, Pauli JR, Cintra DE, et al (2009) EGFR tyrosine kinase inhibitor (PD153035) improves glucose tolerance and insulin action in high-fat diet-fed mice. Diabetes 258(12):2910–9CrossRefGoogle Scholar
  66. 66.
    Lambert CP, Wright NR, Finck BN, Villareal DT (2008) Exercise but not diet-induced weight loss decreases skeletal muscle inflammatory gene expression in frail obese elderly persons. J Appl Physiol 105(2):473–8PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2012

Authors and Affiliations

  • Francesca Casiraghi
    • 1
  • Alberto Omar Chavez
    • 1
  • Nicholas Musi
    • 1
  • Franco Folli
    • 1
  1. 1.Department of Medicine, Division of DiabetesUniversity of Texas Health Science CenterSan AntonioUSA

Personalised recommendations