Advertisement

On the Path to Cardiopulmonary Bypass: From Le Gallois’ Experiments to Brukhonenko’s Machine

  • Matthew S. Yong
  • Stephen B. Horton
  • Igor E. Konstantinov
Chapter

Abstract

The success and achievements in the field of cardiac surgery are attributed to the discovery of cardiopulmonary bypass techniques. The pioneering work of nineteenth century scientists, physicians, and engineers in experimental animal organ perfusion laid the foundations for artificial oxygenation techniques (film, bubble, and isolated lung) and closed circulation circuits. The first half of the twentieth century featured the work of Brukhonenko, Crafoord, Björk, Jonblogbloed, and Gibbon in refining perfusion methods in search of achieving clinical application in humans. They assembled heart–lung machines intended for use age during cardiovascular operations. The first clinical application of the heart–lung machine was recorded in 1951, heralding a new era in cardiac surgery.

Keywords

Cardiopulmonary Bypass Atrial Septal Defect Pulsatile Flow Artificial Circulation Perfusion Experiment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Le Gallois JJC (1813) Experiments on the principle of life, and particularly on the principle of the motions of the heart, and on the seat of this principle: including the report made to the first class of the Institute, upon the experiments relative to the motions of the heart. M. Thomas, Philadelphia, pp 130–131CrossRefGoogle Scholar
  2. 2.
    Brown-Séquard E (1858) Recherches expérimentales sur les propriétés physiologiques et les usages du sang rouge et du sang noir et leurs principaux éléments gazeux, l′oxygène et l′acide carbonique. J de la Physiologie De l’Homme et des Animaux 1:95–122, 353–367, 729–735Google Scholar
  3. 3.
    Bidder E (1862) Beiträge zur Lehre von der Function der Niere. Inaugural Dissertation DorpatGoogle Scholar
  4. 4.
    Loebell CE (1849) De conditionibus quibus secretiones in glandulis perficiuntur. Dissertatio Inauguralis Marburg, MarburgGoogle Scholar
  5. 5.
    Schmidt A (1867) Die Athmung innerhalb des Blutes. Zweite Abhandlung—Aus dem physiologischen Institute zu Leipzig. Vorgelegt von dem wirkl. Mitgliede C. Ludwig. Berichte über die Verhandlungen der Königlich Sächsischen Gesellschaft der Wissenschaften zu Leipzig. Mathematisch–Physische Classe 19:99–130Google Scholar
  6. 6.
    Ludwig C, Schmidt A (1868) Das Verhalten der Gase, welche mit dem Blut durch den reizbaren Säugethiermuskel strömen. Berichte über die Verhandlungen der Königlich Sächsischen Gesellschaft der Wissenschaften zu Leipzig, mathematisch–physische Classe 20:12–72Google Scholar
  7. 7.
    Von Frey M, Gruber M (1885) Untersuchungen über den Stoffwechsel isolierter Organe. Ein Respirationsapparat für isolierte Organe. Archiv für Anatomie und Physiologie. (Fortsetzung des von Reil, Reil u. Autenrieth, J. F. Meckel, Joh. Müller, Reichert u. Du Bois-Reymond herausgegebenen Archives). Physiologische Abtheilung Leipzig 9:519–532Google Scholar
  8. 8.
    Jacobj C (1890) Apparat zur Durchblutung isolirter überlebender Organe. Archiv für experimentelle Pathologie und Pharmakologie (Naunyn/Schmiedeberg) 26:388–397Google Scholar
  9. 9.
    Brodie TG (1903) The perfusion of surviving organs. J Physiol 29:266–272PubMedGoogle Scholar
  10. 10.
    Embley EH, Martin CJ (1905) The action of anaesthetic quantities of chloroform upon the blood vessels of the bowel and kidney; with an account of an artificial circulation apparatus. J Physiol 32:147–158PubMedGoogle Scholar
  11. 11.
    Friedmann E (1910) Zur Technik der Durchströmung überlebender Organe. Biochemische Zeitschrift 27:87–96Google Scholar
  12. 12.
    Neubauer O, Groß W (1910) Zur Kenntnis des Tyrosinabbaus in der künstlich durchbluteten Leber. Hoppe-Seyler’s Zeitschrift für Physiologische Chemie 67:219–229CrossRefGoogle Scholar
  13. 13.
    Hooker DR (1910) A study of the isolated kidney: the influence of pulse pressure upon renal function. Am J Physiol 27:24–45Google Scholar
  14. 14.
    Hamel G (1889) Die Bedeutung des Pulses für den Blutstrom. Zeitschr Biologie 25:474–495Google Scholar
  15. 15.
    McMaster PD, Parsons RJ (1938) The effect of the pulse on the spread of substances through tissues. J Exp Med 68:377–400PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Kermack WO, Lambie CG (1925) An automatic perfusion apparatus. J Physiol 60:24–25Google Scholar
  17. 17.
    Bock J (1907) Ein Apparat zu Infusionsversuchen. Naunyn0Schmiedebergs Arch Exp Pathol Pharmakol 57:177–182Google Scholar
  18. 18.
    Fröhlich A (1913) Eine Vorrichtung für Dauerdurchströmungen von Kaltblüterorganen mit kleinen Flüssigkeitsmengen. Zentralbl Physiol 27:1011–1013Google Scholar
  19. 19.
    Cooley DA (1987) Development of the roller pump for use in the cardio-pulmonary bypass circuit. Texas Heart Inst J 14:113–118Google Scholar
  20. 20.
    von Issekutz B (1927) Beiträge zur Wirkung des Insulins. II. Mitteilung: Insulin-Adrenalin-Antagonismus. Biochem Zeitschr 183:283–297Google Scholar
  21. 21.
    Von Frey M (1885) Versuche über den Stoffwechsel des Muskels. Arch Physiol 9:533–562Google Scholar
  22. 22.
    Hooker DR (1915) The perfusion of the mammalian medulla: the effect of calcium and of potassium on the respiratory and cardiac centers. Am J Physiol 38:200–208Google Scholar
  23. 23.
    Bayliss LE, Fee AR, Ogden E (1928) A method of oxygenating blood. J Physiol 66:443–448PubMedGoogle Scholar
  24. 24.
    Cruickshank EWH (1934) A magnetic blood oxygenator. J Physiol 82:26–32PubMedGoogle Scholar
  25. 25.
    Evans CL, Grande FYHF (1934) Two simple heart-oxygenator circuits for blood-fed hearts. Q J Exp Physiol 24:283–287Google Scholar
  26. 26.
    Bornstein A (1926) Über Durchblutungsversuche an der überlebenden Hundeextremität. Naunyn-Schmiedebergs Arch Exp Pathol und Pharmakol 115:367–374CrossRefGoogle Scholar
  27. 27.
    Staub H (1931) Methode zur fortlaufenden Bestimmung des Gaswechsels isoliert durchströmter Organe im geschlossenen System. I. Mitteilung: Über Leberstoffwechsel. Naunyn-Schmiedebergs Arch Exp Pathol Pharmakol 162:420–51Google Scholar
  28. 28.
    Gregory RA (1939) A new oxygenator for blood-perfused hearts. J Physiol 95:49P–51PGoogle Scholar
  29. 29.
    Von Schröder W (1882) Ueber die Bildungsstätte des Harnstoffs. Arch Exp Pathol Pharmakol 15:364–400Google Scholar
  30. 30.
    Astrup P, Severinghaus JW (1986) The history of blood gases, acids, and bases. Munksgaard, Copenhagen, pp 281–284Google Scholar
  31. 31.
    Brukhonenko SS (1964) Artificial circulation. Nauka, MoscowGoogle Scholar
  32. 32.
    Jacobj C (1895) Ein Beitrag zur Technik der künstlichen Durchblutung überlebender Organe. Arch Exp Pathol Pharmakol 31:330–348CrossRefGoogle Scholar
  33. 33.
    Brukhonenko SS, Tchetchuline S (1929) Experiences avec la tête isolée du chien. J Physiol Pathol Gen 27:31–45Google Scholar
  34. 34.
    Dale HH, Schuster EHJ (1928) A double perfusion-pump. J Physiol 64:356–364PubMedGoogle Scholar
  35. 35.
    Carrel A, Lindbergh CA (1935) The culture of whole organs. Science 81:621–623PubMedCrossRefGoogle Scholar
  36. 36.
    Lindbergh CA (1935) An apparatus for the culture of whole organs. J Exp Med 62:409–433PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Brukhonenko S (1929) Circulation artificielle du sang dans l′organisme entier d′un chien avec coeur exclu. J Pathol Pathol Gen 27:257–272Google Scholar
  38. 38.
    Konstantinov IE, Alexi-Meskishvili VV, Sergei S (2000) Brukhonenko: the development of the first heart–lung machine for total body perfusion. Ann Thorac Surg 69:962–966PubMedCrossRefGoogle Scholar
  39. 39.
    Brukhonenko S, Steppuhn O (1927) Experimentelles zur Anwendung von “Germanin” (Bayer 205) bei Bluttransfusionen. Munchener Med Wochenschr 74:1316–1317Google Scholar
  40. 40.
    Brukhonenko SS, Tchechulin SI (1928) Experiments on isolation of dog’s head. Trudi Nauchnogo Khimiko-Pharm Inst 20:7–43Google Scholar
  41. 41.
    Brukhonenko SS (1928) Artificial circulation of the whole body of a dog with arrested heart. Trudi Nauchnogo Khimiko-Pharm Inst 20:44–72Google Scholar
  42. 42.
    Probert WR, Melrose DG (1960) An early Russian heart–lung machine. Br Med J 1:1047–1048Google Scholar
  43. 43.
    Shaw GB (1929) Shaw will sich kopfen lassen, wenn … Berliner Tageblatt 130:1Google Scholar
  44. 44.
    Alexi-Meskishvili VV, Potapov EV, Beyer EA, Hetzer R (1998) Nikolai Terebinski: a pioneer of the open valve operation. Ann Thorac Surg 66:1440–1443PubMedCrossRefGoogle Scholar
  45. 45.
    Terebinski N (1938) Experimental stenosis of the atrioventricular valves of the heart and their repair. Khirurgia 12:36–43Google Scholar
  46. 46.
    Richardson RG (1979) Scalpel and heart. Scribner, New York, p 223Google Scholar
  47. 47.
    Gibbon JH (1937) Artificial maintenance of circulation during experimental occlusion of pulmonary artery. Arch Surg 34:1105–1131CrossRefGoogle Scholar
  48. 48.
    Gibbon JH (1939) An oxygenator with a large surface-volume ratio. J Lab Clin Med 24:1192–1198Google Scholar
  49. 49.
    Gibbon JH (1939) The maintenance of life during experimental occlusion of the pulmonary artery followed by survival. Surg Gynecol Obstet 69:602–614Google Scholar
  50. 50.
    Boettcher W, Merkle F, Weitkemper HH (2003) History of extracorporeal circulation: the conceptional and development period. J Extra Corpor Technol 35:172–183PubMedGoogle Scholar
  51. 51.
    Crafoord C (1949) Some aspects of the development of intrathoracic surgery. Surg Gynecol Obstet 89:629–637PubMedGoogle Scholar
  52. 52.
    O’Shaughnessy L (1939) Future of cardiac surgery. Lancet 2:969–971CrossRefGoogle Scholar
  53. 53.
    Crafoord C (1958) Operationen am offenen Herzen mit Herz-Lungen-Maschine (Stockholmer Modell). Langenbecks Arch Klin Chir 289:257–266Google Scholar
  54. 54.
    Crafoord C (1965) The development of cardiovascular surgery. J Cardiovasc Surg 6:1–12Google Scholar
  55. 55.
    Björk VO (1948) An artificial heart or cardiopulmonary machine. Performance in animals. Lancet 260:491–493Google Scholar
  56. 56.
    Jongbloed J (1949) The mechanical heart–lung system. Surg Gynecol Obstet 89:684–691PubMedGoogle Scholar
  57. 57.
    Dennis C, Spring DS, Nelson GE et al (1951) Development of a pump-oxygenator to replace the heart and lungs; An apparatus applicable to human patients and application in one case. Ann Surg 134:709–721PubMedGoogle Scholar
  58. 58.
    Dogliotti AM (1952) Clinical use of the artificial circulation with a note on intra-arterial transfusion. Bull Johns Hopkins Hospital 90:131–133Google Scholar
  59. 59.
    Dogliotti AM, Constantini A (1951) Primo caso di applicazione all′uomo di un apparecchio di circulazione sanguigna extracorporea. Minerva Chir 6:657–659PubMedGoogle Scholar
  60. 60.
    Lewis FJ, Taufic M (1953) Closure of atrial septal defects with the aid of hypothermia; experimental accomplishments, and the report of one successful case. Surgery 33:52–59PubMedGoogle Scholar
  61. 61.
    Gibbon JH (1954) Application of a mechanical heart and lung apparatus to cardiac surgery. Minnesota Med 37:171–187PubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia 2013

Authors and Affiliations

  • Matthew S. Yong
    • 1
  • Stephen B. Horton
    • 2
  • Igor E. Konstantinov
    • 3
  1. 1.Cardiac Surgery Unit, Royal Children’s HospitalUniversity of MelbourneMelbourneAustralia
  2. 2.Department of Perfusion, Royal Children HospitalUniversity of MelbourneMelbourneAustralia
  3. 3.Cardiac Surgical UnitThe Royal Children’s HospitalParkville, MelbourneAustralia

Personalised recommendations