Skip to main content

Abstract

Ultrasonography (US) is usually the first imaging modality chosen for the primary evaluation of the pancreas. The pancreatic gland can almost always be visualized by US. Even though there are well-known and sometimes over-emphasized limitations, the pancreatic gland can be adequately visualized by using correct US techniques, imaging and settings. Conventional US is a noninvasive and relatively low cost imaging method which is widely available and easy to perform. Tissue harmonic imaging (THI) and Doppler imaging are well known technologies that provide significant complementary information to the conventional method, playing an important role in the diagnosis and staging of pancreatic diseases. In recent decades, new interesting US methods have been developed focused on the evaluation of mechanical strain properties of tissues, such as elastography and sonoelasticity. Acoustic radiation force impulse (ARFI) imaging is a promising new US method that allows the evaluation of mechanical strain properties of deep tissues with the potential to characterize tissue without the need for external compression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wilson SR, Gupta C, Eliasziw M et al (2009) Volume imaging in the abdomen with ultrasound: how we do it. Am J Roentgenol 193:79–85

    Article  Google Scholar 

  2. Martínez-Noguera A, D’Onofrio M (2007) Ultrasonography of the pancreas. 1. Conventional imaging. Abdom Imaging 32:136–149

    Article  PubMed  Google Scholar 

  3. MartÍnez-Noguera A, Montserrat E, Torrubia S et al (2001) Ultrasound of the pancreas: update and controversies. Eur Radiol 11:1594–1606

    Article  PubMed  Google Scholar 

  4. Abu-Yousef MM, El-Zein Y (2000) Improved US visualization of the pancreatic tail with simethicone, water, and patient rotation. Radiology 217:780–785

    PubMed  CAS  Google Scholar 

  5. Shapiro RS, Wagreich J, Parsons RB et al (1998) Tissue harmonic imaging sonography: evaluation of image quality compared with conventional sonography. Am J Roentgenol 171:1203–1206

    CAS  Google Scholar 

  6. D’Onofrio M, Gallotti A, Pozzi Mucelli R (2010) Imaging techniques in pancreatic tumors. Expert Rev Med Devices 7:257–273. Review

    Article  PubMed  Google Scholar 

  7. Desser TS, Jeffrey RB (2001) Tissue harmonic imaging techniques: physical principles and clinical applications. Semin Ultrasound CT MR 22:1–10

    Article  PubMed  CAS  Google Scholar 

  8. Hohl C, Schmidt T, Honnef D et al (2007) Ultrasonography of the pancreas. 2. Harmonic Imaging. Abdom Imaging 32::150–160. Review

    Article  PubMed  CAS  Google Scholar 

  9. Ward B, Baker AC, Humphrey VF (1997) Nonlinear propagation applied to the improvement of resolution in diagnostic medical ultrasound. J Acoust Soc Am 101:143–154

    Article  PubMed  CAS  Google Scholar 

  10. Duck FA (2002) Nonlinear acoustics in diagnostic ultrasound. Ultrasound Med Biol 28:1–18

    Article  PubMed  Google Scholar 

  11. Hohl C, Schmidt T, Haage P et al (2004) Phase-inversion tissue harmonic imaging compared with conventional Bmode ultrasound in the evaluation of pancreatic lesions. Eur Radiol 14:1109–1117

    Article  PubMed  Google Scholar 

  12. Sparchez Z (2003) Tissue harmonic imaging: Is it useful in hepatobiliary and pancreatic ultrasonography? Rom J Gastroenterol 12:239–246

    PubMed  Google Scholar 

  13. Bertolotto M, D’Onofrio M, Martone E et al (2007) Ultrasonography of the pancreas. 3. Doppler imaging. Abdom Imaging 32:161–170

    Article  PubMed  CAS  Google Scholar 

  14. Nelson TR, Pretorius TH (1998) The Doppler signal: Where does it come from and what does it mean? Am J Roentgenol 151:439–447

    Google Scholar 

  15. Angeli E, Venturini M, Vanzulli A et al (1997) Color-Doppler imaging in the assessment of vascular involvement by pancreatic carcinoma. Am J Roentgenol 168:193–197. Review

    CAS  Google Scholar 

  16. Hamper UM, DeJong MR, Caskey CI et al (1997) Power Doppler Imaging: clinical experience and correlation with color Doppler US and other imaging modalities. Radiographics 1:499–513

    Google Scholar 

  17. Yassa NA, Yang J, Stein S et al (1997) Gray-scale and color flow sonography of pancreatic ductal adenocarcinoma. J Clin Ultrasound 25:473–480

    Article  PubMed  CAS  Google Scholar 

  18. Ueno N, Tomiyama T, Tano S et al (1997) Color-Doppler ultrasonography in the diagnosis of portal vein invasion in patients with pancreatic cancer. J Ultrasound Med 16:825–830

    PubMed  CAS  Google Scholar 

  19. Minniti S, Bruno C, Biasiutti C et al (2003) Sonography versus helical CT in identification and staging of pancreatic ductal adenocarcinoma. J Clin Ultrasound 31:175–182

    Article  PubMed  Google Scholar 

  20. Lu DSK, Reber HA, Krasny RM et al (1997) Local staging of pancreatic cancer: criteria for unresectability of major vessels as revealed by pancreatic-phase, thin-section helical CT. Am J Roentgenol 168:1439–1443

    CAS  Google Scholar 

  21. Evans DH (2010) Colour flow and motion imaging. Proc Inst Mech Eng H 224:241–253

    Article  PubMed  CAS  Google Scholar 

  22. Ophir J, Céspedes I, Ponnekanti H et al (1991) Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason Imaging 13:111–134

    Article  PubMed  CAS  Google Scholar 

  23. Lerner RM, Huang SR, Parker KJ (1990) “Sonoelasticity” images derived from ultrasound signals in mechanically vibrated tissues. Ultrasound Med Biol 16:231–239

    Article  PubMed  CAS  Google Scholar 

  24. Garra BS (2007) Imaging and estimation of tissue elasticity by ultrasound. Ultrasound Q 23:255–268. Review

    Article  PubMed  Google Scholar 

  25. McLaughlin J, Renzi D, Parker K et al (2007) Shear wave speed recovery using moving interference patterns obtained in sonoelastography experiments. J Acoust Soc Am 121:2438–2446

    Article  PubMed  Google Scholar 

  26. Sandrin L, Catheline S, Tanter M et al (1999) Time-resolved pulsed elastography with ultrafast ultrasonic imaging. Ultrason Imaging 21:259–272

    PubMed  CAS  Google Scholar 

  27. Itoh A, Ueno E, Tohno E et al (2006) Breast disease: clinical application of US elastography for diagnosis. Radiology 239:341–350

    Article  PubMed  Google Scholar 

  28. Cochlin DL, Ganatra RH, Griffiths DF (2002) Elastography in the detection of prostatic cancer. Clin Radiol 57:1014–1020

    Article  PubMed  Google Scholar 

  29. Lyshchik A, Higashi T, Asato R et al (2005) Thyroid gland tumor diagnosis at US elastography. Radiology 237:202–211

    Article  PubMed  Google Scholar 

  30. Lyshchik A, Higashi T, Asato R et al (2007) Cervical lymph node metastases: diagnosis at sonoelastography — initial experience. Radiology 243:258–267

    Article  PubMed  Google Scholar 

  31. Lamproye A, Belaiche J, Delwaide J (2007) The FibroScan: a new non invasive method of liver fibrosis evaluation. Rev Med Liege 62:68–72

    PubMed  Google Scholar 

  32. Fahey BJ, Nelson RC, Bradway DP et al (2008) In vivo visualization of abdominal malignancies with acoustic radiation force elastography. Phys Med Biol 53:279–293

    Article  PubMed  CAS  Google Scholar 

  33. Nightingale K, Soo MS, Nightingale R et al (2002) Acoustic radiation force impulse imaging: in vivo demonstration of clinical feasibility. Ultrasound Med Biol 28:227–235

    Article  PubMed  Google Scholar 

  34. Fahey BJ, Nightingale KR, Nelson RC et al (2005) Acoustic radiation force impulse imaging of the abdomen: demonstration of feasibility and utility. Ultrasound Med Biol 31:1185–1198

    Article  PubMed  Google Scholar 

  35. Gallotti A, D’Onofrio M, Pozzi Mucelli R (2010) Acoustic Radiation Force Impulse (ARFI) technique in ultrasound with Virtual Touch tissue quantification of the upper abdomen. Radiol Med 115:889–897

    Article  PubMed  CAS  Google Scholar 

  36. D’Onofrio M, Gallotti A, Salvia R et al (2010) Acoustic Radiation Force Impulse (ARFI) ultrasound imaging of pancreatic cystic lesions. Eur J Radiol 2010. doi:10.1016/j.ejrad.2010.06.015

    Google Scholar 

  37. D’Onofrio M, Gallotti A, Pozzi Mucelli R (2010) Pancreatic mucinous cystadenoma at ultrasound Acoustic Radiation Force Impulse (ARFI) imaging. Pancreas 39:684–685

    Article  PubMed  Google Scholar 

  38. D’Onofrio M, Zamboni G, Faccioli N et al (2007) Ultrasonography of the pancreas. 4. Contrast-enhanced imaging. Abdom imaging 32:171–181

    Article  PubMed  Google Scholar 

  39. Correas JM, Bridal L, Lesavre A et al (2001) Ultrasound contrast agents: properties, principles of action, tolerance, and artifacts. Eur Radiol 11:1316–1328

    Article  PubMed  CAS  Google Scholar 

  40. Torzilli G (2005) Adverse effects associated with SonoVue use. Expert Opin Drug Saf 4:399–401

    Article  PubMed  CAS  Google Scholar 

  41. Quaia E (2007) Microbubble ultrasound contrast agents: an update. Eur Radiol 17:1995–2008

    Article  PubMed  Google Scholar 

  42. Burns PN, Wilson SR, Hope Simpson D (2000) Pulse inversion imaging of liver blood flow: an improved method for characterization of focal masses with microbubble contrast. Invest Radiol 35:58–71

    Article  PubMed  CAS  Google Scholar 

  43. Whittingham T (2005) Contrast-specific imaging techniques: technical perspective. In: Quaia E (ed) Contrast media in ultrasonography: Basic principles and clinical applications. Springer, Berlin Heidelberg New York, pp 43–70

    Chapter  Google Scholar 

  44. D’Onofrio, Martone E, Malagò R et al (2007) Contrast-enhanced ultrasonography of the pancreas. JOP J Pancreas. 8[1 Suppl]:71–76

    Google Scholar 

  45. D’Onofrio M, Malagò R, Zamboni G et al (2005) Contrastenhanced ultrasonography better identifies pancreatic tumor vascularization than helical CT. Pancreatology 5:398–402

    Article  PubMed  Google Scholar 

  46. D’Onofrio M, Zamboni GA, Malagò R et al (2009) Resectable pancreatic adenocarcinoma: is the enhancement pattern at contrast-enhanced ultrasonography a pre-operative prognostic factor? Ultrasound Med Biol 35:1929–1937

    Article  PubMed  Google Scholar 

  47. van Wamel A, Bouakaz A, Bernard B et al (2005) Controlled drug delivery with ultrasound and gas microbubbles. J Control Release 101:389–391

    PubMed  Google Scholar 

  48. Tawada K, Yamaguchi T, Kobayashi A et al (2009) Changes in tumor vascularity depicted by contrast-enhanced ultrasonography as a predictor of chemotherapeutic effect in patients with unresectable pancreatic cancers. Pancreas 38:30–35

    Article  PubMed  Google Scholar 

  49. Kersting S, Konopke R, Kersting F et al (2009) Quantitative perfusion analysis of transabdominal contrast-enhanced ultrasonography of pancreatic masses and carcinomas. Gastroenterology 137:1903–1911

    Article  PubMed  Google Scholar 

  50. Xu J, Liang Z, Hao S et al (2009) Pancreatic adenocarcinoma: dynamic-64 slices helical CT with perfusion imaging. Abdom Imaging 34:759–766

    Article  PubMed  Google Scholar 

  51. EFSUMB Study Group (2008) Guidelines and good clinical practice recommendations for contrast enhanced ultrasound (CEUS) — update 2008. Ultraschall Med 29:28–44

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Gallotti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Italia

About this chapter

Cite this chapter

Gallotti, A., Calliada, F. (2012). Ultrasound Imaging. In: D’Onofrio, M. (eds) Ultrasonography of the Pancreas. Springer, Milano. https://doi.org/10.1007/978-88-470-2379-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2379-6_1

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-2378-9

  • Online ISBN: 978-88-470-2379-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics