Advertisement

Ultrasound Imaging

  • Anna Gallotti
  • Fabrizio Calliada

Abstract

Ultrasonography (US) is usually the first imaging modality chosen for the primary evaluation of the pancreas. The pancreatic gland can almost always be visualized by US. Even though there are well-known and sometimes over-emphasized limitations, the pancreatic gland can be adequately visualized by using correct US techniques, imaging and settings. Conventional US is a noninvasive and relatively low cost imaging method which is widely available and easy to perform. Tissue harmonic imaging (THI) and Doppler imaging are well known technologies that provide significant complementary information to the conventional method, playing an important role in the diagnosis and staging of pancreatic diseases. In recent decades, new interesting US methods have been developed focused on the evaluation of mechanical strain properties of tissues, such as elastography and sonoelasticity. Acoustic radiation force impulse (ARFI) imaging is a promising new US method that allows the evaluation of mechanical strain properties of deep tissues with the potential to characterize tissue without the need for external compression.

Keywords

Main Pancreatic Duct Acoustic Radiation Force Impulse Tissue Stiffness Shear Wave Speed Pancreatic Gland 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Wilson SR, Gupta C, Eliasziw M et al (2009) Volume imaging in the abdomen with ultrasound: how we do it. Am J Roentgenol 193:79–85CrossRefGoogle Scholar
  2. 2.
    Martínez-Noguera A, D’Onofrio M (2007) Ultrasonography of the pancreas. 1. Conventional imaging. Abdom Imaging 32:136–149PubMedCrossRefGoogle Scholar
  3. 3.
    MartÍnez-Noguera A, Montserrat E, Torrubia S et al (2001) Ultrasound of the pancreas: update and controversies. Eur Radiol 11:1594–1606PubMedCrossRefGoogle Scholar
  4. 4.
    Abu-Yousef MM, El-Zein Y (2000) Improved US visualization of the pancreatic tail with simethicone, water, and patient rotation. Radiology 217:780–785PubMedGoogle Scholar
  5. 5.
    Shapiro RS, Wagreich J, Parsons RB et al (1998) Tissue harmonic imaging sonography: evaluation of image quality compared with conventional sonography. Am J Roentgenol 171:1203–1206Google Scholar
  6. 6.
    D’Onofrio M, Gallotti A, Pozzi Mucelli R (2010) Imaging techniques in pancreatic tumors. Expert Rev Med Devices 7:257–273. ReviewPubMedCrossRefGoogle Scholar
  7. 7.
    Desser TS, Jeffrey RB (2001) Tissue harmonic imaging techniques: physical principles and clinical applications. Semin Ultrasound CT MR 22:1–10PubMedCrossRefGoogle Scholar
  8. 8.
    Hohl C, Schmidt T, Honnef D et al (2007) Ultrasonography of the pancreas. 2. Harmonic Imaging. Abdom Imaging 32::150–160. ReviewPubMedCrossRefGoogle Scholar
  9. 9.
    Ward B, Baker AC, Humphrey VF (1997) Nonlinear propagation applied to the improvement of resolution in diagnostic medical ultrasound. J Acoust Soc Am 101:143–154PubMedCrossRefGoogle Scholar
  10. 10.
    Duck FA (2002) Nonlinear acoustics in diagnostic ultrasound. Ultrasound Med Biol 28:1–18PubMedCrossRefGoogle Scholar
  11. 11.
    Hohl C, Schmidt T, Haage P et al (2004) Phase-inversion tissue harmonic imaging compared with conventional Bmode ultrasound in the evaluation of pancreatic lesions. Eur Radiol 14:1109–1117PubMedCrossRefGoogle Scholar
  12. 12.
    Sparchez Z (2003) Tissue harmonic imaging: Is it useful in hepatobiliary and pancreatic ultrasonography? Rom J Gastroenterol 12:239–246PubMedGoogle Scholar
  13. 13.
    Bertolotto M, D’Onofrio M, Martone E et al (2007) Ultrasonography of the pancreas. 3. Doppler imaging. Abdom Imaging 32:161–170PubMedCrossRefGoogle Scholar
  14. 14.
    Nelson TR, Pretorius TH (1998) The Doppler signal: Where does it come from and what does it mean? Am J Roentgenol 151:439–447Google Scholar
  15. 15.
    Angeli E, Venturini M, Vanzulli A et al (1997) Color-Doppler imaging in the assessment of vascular involvement by pancreatic carcinoma. Am J Roentgenol 168:193–197. ReviewGoogle Scholar
  16. 16.
    Hamper UM, DeJong MR, Caskey CI et al (1997) Power Doppler Imaging: clinical experience and correlation with color Doppler US and other imaging modalities. Radiographics 1:499–513Google Scholar
  17. 17.
    Yassa NA, Yang J, Stein S et al (1997) Gray-scale and color flow sonography of pancreatic ductal adenocarcinoma. J Clin Ultrasound 25:473–480PubMedCrossRefGoogle Scholar
  18. 18.
    Ueno N, Tomiyama T, Tano S et al (1997) Color-Doppler ultrasonography in the diagnosis of portal vein invasion in patients with pancreatic cancer. J Ultrasound Med 16:825–830PubMedGoogle Scholar
  19. 19.
    Minniti S, Bruno C, Biasiutti C et al (2003) Sonography versus helical CT in identification and staging of pancreatic ductal adenocarcinoma. J Clin Ultrasound 31:175–182PubMedCrossRefGoogle Scholar
  20. 20.
    Lu DSK, Reber HA, Krasny RM et al (1997) Local staging of pancreatic cancer: criteria for unresectability of major vessels as revealed by pancreatic-phase, thin-section helical CT. Am J Roentgenol 168:1439–1443Google Scholar
  21. 21.
    Evans DH (2010) Colour flow and motion imaging. Proc Inst Mech Eng H 224:241–253PubMedCrossRefGoogle Scholar
  22. 22.
    Ophir J, Céspedes I, Ponnekanti H et al (1991) Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason Imaging 13:111–134PubMedCrossRefGoogle Scholar
  23. 23.
    Lerner RM, Huang SR, Parker KJ (1990) “Sonoelasticity” images derived from ultrasound signals in mechanically vibrated tissues. Ultrasound Med Biol 16:231–239PubMedCrossRefGoogle Scholar
  24. 24.
    Garra BS (2007) Imaging and estimation of tissue elasticity by ultrasound. Ultrasound Q 23:255–268. ReviewPubMedCrossRefGoogle Scholar
  25. 25.
    McLaughlin J, Renzi D, Parker K et al (2007) Shear wave speed recovery using moving interference patterns obtained in sonoelastography experiments. J Acoust Soc Am 121:2438–2446PubMedCrossRefGoogle Scholar
  26. 26.
    Sandrin L, Catheline S, Tanter M et al (1999) Time-resolved pulsed elastography with ultrafast ultrasonic imaging. Ultrason Imaging 21:259–272PubMedGoogle Scholar
  27. 27.
    Itoh A, Ueno E, Tohno E et al (2006) Breast disease: clinical application of US elastography for diagnosis. Radiology 239:341–350PubMedCrossRefGoogle Scholar
  28. 28.
    Cochlin DL, Ganatra RH, Griffiths DF (2002) Elastography in the detection of prostatic cancer. Clin Radiol 57:1014–1020PubMedCrossRefGoogle Scholar
  29. 29.
    Lyshchik A, Higashi T, Asato R et al (2005) Thyroid gland tumor diagnosis at US elastography. Radiology 237:202–211PubMedCrossRefGoogle Scholar
  30. 30.
    Lyshchik A, Higashi T, Asato R et al (2007) Cervical lymph node metastases: diagnosis at sonoelastography — initial experience. Radiology 243:258–267PubMedCrossRefGoogle Scholar
  31. 31.
    Lamproye A, Belaiche J, Delwaide J (2007) The FibroScan: a new non invasive method of liver fibrosis evaluation. Rev Med Liege 62:68–72PubMedGoogle Scholar
  32. 32.
    Fahey BJ, Nelson RC, Bradway DP et al (2008) In vivo visualization of abdominal malignancies with acoustic radiation force elastography. Phys Med Biol 53:279–293PubMedCrossRefGoogle Scholar
  33. 33.
    Nightingale K, Soo MS, Nightingale R et al (2002) Acoustic radiation force impulse imaging: in vivo demonstration of clinical feasibility. Ultrasound Med Biol 28:227–235PubMedCrossRefGoogle Scholar
  34. 34.
    Fahey BJ, Nightingale KR, Nelson RC et al (2005) Acoustic radiation force impulse imaging of the abdomen: demonstration of feasibility and utility. Ultrasound Med Biol 31:1185–1198PubMedCrossRefGoogle Scholar
  35. 35.
    Gallotti A, D’Onofrio M, Pozzi Mucelli R (2010) Acoustic Radiation Force Impulse (ARFI) technique in ultrasound with Virtual Touch tissue quantification of the upper abdomen. Radiol Med 115:889–897PubMedCrossRefGoogle Scholar
  36. 36.
    D’Onofrio M, Gallotti A, Salvia R et al (2010) Acoustic Radiation Force Impulse (ARFI) ultrasound imaging of pancreatic cystic lesions. Eur J Radiol 2010. doi:10.1016/j.ejrad.2010.06.015Google Scholar
  37. 37.
    D’Onofrio M, Gallotti A, Pozzi Mucelli R (2010) Pancreatic mucinous cystadenoma at ultrasound Acoustic Radiation Force Impulse (ARFI) imaging. Pancreas 39:684–685PubMedCrossRefGoogle Scholar
  38. 38.
    D’Onofrio M, Zamboni G, Faccioli N et al (2007) Ultrasonography of the pancreas. 4. Contrast-enhanced imaging. Abdom imaging 32:171–181PubMedCrossRefGoogle Scholar
  39. 39.
    Correas JM, Bridal L, Lesavre A et al (2001) Ultrasound contrast agents: properties, principles of action, tolerance, and artifacts. Eur Radiol 11:1316–1328PubMedCrossRefGoogle Scholar
  40. 40.
    Torzilli G (2005) Adverse effects associated with SonoVue use. Expert Opin Drug Saf 4:399–401PubMedCrossRefGoogle Scholar
  41. 41.
    Quaia E (2007) Microbubble ultrasound contrast agents: an update. Eur Radiol 17:1995–2008PubMedCrossRefGoogle Scholar
  42. 42.
    Burns PN, Wilson SR, Hope Simpson D (2000) Pulse inversion imaging of liver blood flow: an improved method for characterization of focal masses with microbubble contrast. Invest Radiol 35:58–71PubMedCrossRefGoogle Scholar
  43. 43.
    Whittingham T (2005) Contrast-specific imaging techniques: technical perspective. In: Quaia E (ed) Contrast media in ultrasonography: Basic principles and clinical applications. Springer, Berlin Heidelberg New York, pp 43–70CrossRefGoogle Scholar
  44. 44.
    D’Onofrio, Martone E, Malagò R et al (2007) Contrast-enhanced ultrasonography of the pancreas. JOP J Pancreas. 8[1 Suppl]:71–76Google Scholar
  45. 45.
    D’Onofrio M, Malagò R, Zamboni G et al (2005) Contrastenhanced ultrasonography better identifies pancreatic tumor vascularization than helical CT. Pancreatology 5:398–402PubMedCrossRefGoogle Scholar
  46. 46.
    D’Onofrio M, Zamboni GA, Malagò R et al (2009) Resectable pancreatic adenocarcinoma: is the enhancement pattern at contrast-enhanced ultrasonography a pre-operative prognostic factor? Ultrasound Med Biol 35:1929–1937PubMedCrossRefGoogle Scholar
  47. 47.
    van Wamel A, Bouakaz A, Bernard B et al (2005) Controlled drug delivery with ultrasound and gas microbubbles. J Control Release 101:389–391PubMedGoogle Scholar
  48. 48.
    Tawada K, Yamaguchi T, Kobayashi A et al (2009) Changes in tumor vascularity depicted by contrast-enhanced ultrasonography as a predictor of chemotherapeutic effect in patients with unresectable pancreatic cancers. Pancreas 38:30–35PubMedCrossRefGoogle Scholar
  49. 49.
    Kersting S, Konopke R, Kersting F et al (2009) Quantitative perfusion analysis of transabdominal contrast-enhanced ultrasonography of pancreatic masses and carcinomas. Gastroenterology 137:1903–1911PubMedCrossRefGoogle Scholar
  50. 50.
    Xu J, Liang Z, Hao S et al (2009) Pancreatic adenocarcinoma: dynamic-64 slices helical CT with perfusion imaging. Abdom Imaging 34:759–766PubMedCrossRefGoogle Scholar
  51. 51.
    EFSUMB Study Group (2008) Guidelines and good clinical practice recommendations for contrast enhanced ultrasound (CEUS) — update 2008. Ultraschall Med 29:28–44CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2012

Authors and Affiliations

  1. 1.Department of RadiologyIRCCS Policlinico S. MatteoPaviaItaly

Personalised recommendations