Leprosy pp 3-13 | Cite as

History and Phylogeography of Leprosy



Leprosy results from infection with Mycobacterium leprae, an unculturable pathogen with an exceptionally long generation time that has afflicted human populations for millenia. The history of leprosy has been documented by various civilizations and its global spread deduced from the anthropological record, although scientific proof for the latter is often lacking. Considerable insight into the biology, genetics, and evolution of the leprosy bacillus has been obtained from genomics. M. leprae has undergone extensive reductive evolution, losing DNA from its genome, half of which is now occupied by pseudogenes. Comparative genomics of four different strains from India, Brazil, Thailand, and the USA revealed remarkable conservation of the ~3.27-megabase genome (99.995% identity) yet uncovered 215 polymorphic sites, mainly single-nucleotide polymorphisms (SNP), and a handful of new pseudogenes. Mapping these polymorphisms in a large panel of strains defined 16 SNP subtypes that showed strong geographical associations and helped retrace the evolution of M. leprae and the dissemination of leprosy.


Variable Number Tandem Repeat Skeletal Remains Yersinia Pestis Mycobacterium Marinum Leprosy Case 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank all the patients and participants who contributed to this work, particularly Philippe Busso, Nadine Honoré, and Marc Monot. Financial support was generously provided by the Foundation Raoul Follereau, and the National Institutes of Health, National Institute of Allergy and Infectious Diseases (grant RO1-AI47197-01A1).


  1. 1.
    Britton WJ, Lockwood DN (2004) Leprosy. Lancet 363(9416):1209–1219PubMedCrossRefGoogle Scholar
  2. 2.
    Anon. Global leprosy situation (2010) Wkly Epidemiol Rec 85:337–348Google Scholar
  3. 3.
    Cavalli-Sforza LL, Feldman MW (2003) The application of molecular genetic approaches to the study of human evolution. Nat Genet 33(Suppl):266–275Google Scholar
  4. 4.
    Gomez-Valero L, Rocha EP, Latorre A, Silva FJ (2007) Reconstructing the ancestor of Mycobacterium leprae: the dynamics of gene loss and genome reduction. Genome Res 17(8):1178–1185PubMedCrossRefGoogle Scholar
  5. 5.
    Hulse EV (1972) Leprosy and ancient Egypt. Lancet 2(7785):1024–1025PubMedCrossRefGoogle Scholar
  6. 6.
    Dharmendra (1967) History of spread and decline of leprosy, 2nd edn. Ministry of Health, New DelhiGoogle Scholar
  7. 7.
    Skinsnes OK, Chang PH (1985) Understanding of leprosy in ancient China. Int J Lepr Other Mycobact Dis 53(2):289–307PubMedGoogle Scholar
  8. 8.
    Browne SG (1985) The history of leprosy. In: Hastings RC (ed) Leprosy. Churchill Livingstone, Edinburgh, pp 1–14Google Scholar
  9. 9.
    Scollard DM, Skinsnes OK (1999) Oropharyngeal leprosy in art, history, and medicine. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 87(4):463–470PubMedCrossRefGoogle Scholar
  10. 10.
    Dzierzykray-Rogalski T (1980) Paleopathology of the Ptolemaic inhabitants of the Dakhleh oasis (Egypt). J Hum Evol 9:71–74CrossRefGoogle Scholar
  11. 11.
    Robbins G, Tripathy VM, Misra VN et al (2009) Ancient skeletal evidence for leprosy in India (2000 B.C.). PLoS One 4(5):e5669PubMedCrossRefGoogle Scholar
  12. 12.
    Ortner DJ (2003) Infectious diseases: tuberculosis and leprosy. In: Ortner DJ (ed) The identification of pathological conditions in human skeletal remains. Academic, London, pp 227–272CrossRefGoogle Scholar
  13. 13.
    Sansarricq H (1995) Histoire de la lèpre. In: Sansarricq H (ed) La lèpre. Ellipses, Paris, pp 22–32Google Scholar
  14. 14.
    Kirchheimer WF, Storrs EE (1971) Attempts to establish the armadillo (Dasypus novemcinctus Linn.) as a model for the study of leprosy. I. Report of lepromatoid leprosy in an experimentally infected armadillo. Int J Lepr Other Mycobact Dis 39(3):693–702PubMedGoogle Scholar
  15. 15.
    Cole ST, Eiglmeier K, Parkhill J et al (2001) Massive gene decay in the leprosy bacillus. Nature 409:1007–1011PubMedCrossRefGoogle Scholar
  16. 16.
    Cole ST, Brosch R, Parkhill J et al (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393(6685):537–544PubMedCrossRefGoogle Scholar
  17. 17.
    Stinear TP, Seemann T, Harrison PF et al (2008) Insights from the complete genome sequence of Mycobacterium marinum on the evolution of Mycobacterium tuberculosis. Genome Res 18(5):729–741PubMedCrossRefGoogle Scholar
  18. 18.
    Cole ST, Supply P, Honoré N (2001) Repetitive sequences in Mycobacterium leprae and their impact on genome plasticity. Lepr Rev 72:449–461PubMedGoogle Scholar
  19. 19.
    Monot M, Honore N, Garnier T et al (2005) On the origin of leprosy. Science 308(5724):1040–1042PubMedCrossRefGoogle Scholar
  20. 20.
    Monot M, Honore N, Garnier T et al (2009) Comparative genomic and phylogeographic analysis of Mycobacterium leprae. Nat Genet 41(12):1282–1289PubMedCrossRefGoogle Scholar
  21. 21.
    Achtman M (2008) Evolution, population structure, and phylogeography of genetically monomorphic bacterial pathogens. Annu Rev Microbiol 62:53–70PubMedCrossRefGoogle Scholar
  22. 22.
    Shepard CC, Congdon CC (1968) Increased growth of Mycobacterium leprae in thymectomized-irradiated mice after foot pad inoculation. Int J Lepr Other Mycobact Dis 36(2):224–227PubMedGoogle Scholar
  23. 23.
    Honore N, Cole ST (1993) Molecular basis of rifampin resistance in Mycobacterium leprae. Antimicrob Agents Chemother 37(3):414–418PubMedGoogle Scholar
  24. 24.
    Maeda S, Matsuoka M, Nakata N et al (2001) Multidrug resistant Mycobacterium leprae from patients with leprosy. Antimicrob Agents Chemother 45(12):3635–3639PubMedCrossRefGoogle Scholar
  25. 25.
    Williams DL, Gillis TP (2004) Molecular detection of drug resistance in Mycobacterium leprae. Lepr Rev 75(2):118–130PubMedGoogle Scholar
  26. 26.
    Allix-Beguec C, Fauville-Dufaux M, Supply P (2008) Three-year population-based evaluation of standardized mycobacterial interspersed repetitive-unit-variable-number tandem-repeat typing of Mycobacterium tuberculosis. J Clin Microbiol 46(4):1398–1406PubMedCrossRefGoogle Scholar
  27. 27.
    Allix-Beguec C, Harmsen D, Weniger T, Supply P, Niemann S (2008) Evaluation and strategy for use of MIRU-VNTRplus, a multifunctional database for online analysis of genotyping data and phylogenetic identification of Mycobacterium tuberculosis complex isolates. J Clin Microbiol 46(8):2692–2699PubMedCrossRefGoogle Scholar
  28. 28.
    Mazars E, Lesjean S, Banuls AL et al (2001) High-resolution minisatellite-based typing as a portable approach to global analysis of Mycobacterium tuberculosis molecular epidemiology. Proc Natl Acad Sci USA 98(4):1901–1906PubMedCrossRefGoogle Scholar
  29. 29.
    Groathouse NA, Rivoire B, Kim H et al (2004) Multiple polymorphic loci for molecular typing of strains of Mycobacterium leprae. J Clin Microbiol 42(4):1666–1672PubMedCrossRefGoogle Scholar
  30. 30.
    Matsuoka M, Maeda S, Kai M et al (2000) Mycobacterium leprae typing by genomic diversity and global distribution of genotypes. Int J Lepr Other Mycobact Dis 68(2):121–128PubMedGoogle Scholar
  31. 31.
    Filliol I, Motiwala AS, Cavatore M et al (2006) Global phylogeny of Mycobacterium tuberculosis based on single nucleotide polymorphism (SNP) analysis: insights into tuberculosis evolution, phylogenetic accuracy of other DNA fingerprinting systems, and recommendations for a minimal standard SNP set. J Bacteriol 188(2):759–772PubMedCrossRefGoogle Scholar
  32. 32.
    Falush D, Wirth T, Linz B et al (2003) Traces of human migrations in Helicobacter pylori populations. Science 299(5612):1582–1585PubMedCrossRefGoogle Scholar
  33. 33.
    Wirth T, Wang X, Linz B et al (2004) Distinguishing human ethnic groups by means of sequences from Helicobacter pylori: lessons from Ladakh. Proc Natl Acad Sci USA 101(14):4746–4751PubMedCrossRefGoogle Scholar
  34. 34.
    Achtman M, Morelli G, Zhu P et al (2004) Microevolution and history of the plague bacillus, Yersinia pestis. Proc Natl Acad Sci USA 101(51):17837–17842PubMedCrossRefGoogle Scholar
  35. 35.
    Wong SH, Gochhait S, Malhotra D et al (2010) Leprosy and the adaptation of human toll-like receptor 1. PLoS Pathog 6:e1000979PubMedCrossRefGoogle Scholar
  36. 36.
    Cavalli-Sforza LL, Feldman MW (2003) The application of molecular genetic approaches to the study of human evolution. Nat Genet Supp 33:266–275CrossRefGoogle Scholar
  37. 37.
    Underhill PA, Shen P, Lin AA et al (2000) Y chromosome sequence variation and the history of human populations. Nat Genet 26:358–361PubMedCrossRefGoogle Scholar
  38. 38.
    Taylor GM, Watson CL, Lockwood DNJ, Mays SA (2006) Variable nucleotide tandem repeat (VNTR) typing of two cases of lepromatous leprosy from the archaeological record. J Archaeol Sci 33:1569–1579CrossRefGoogle Scholar
  39. 39.
    Watson CL, Lockwood DN (2009) Single nucleotide polymorphism analysis of European archaeological Mycobacterium leprae DNA. PLoS One 4(10):e7547PubMedCrossRefGoogle Scholar
  40. 40.
    Molto JE (2002) Leprosy in Roman period skeletons from Kellis 2, Dakhleh, Egypt. In: Roberts CA, Lewis ME, Manchester K (eds) The past and present of leprosy: archaeological, historical, palaeopathological and clinical approaches., BAR International Series, vol 1054. Archaeopress, Oxford, pp 179–192Google Scholar
  41. 41.
    Taylor GM, Blau S, Mays S et al (2009) Genotyping of Mycobacterium leprae amplified from an archaeological case of lepromatous leprosy from Central Asia. J Archaeol Sci 36:2408–2414CrossRefGoogle Scholar
  42. 42.
    Green RE, Krause J, Briggs AW et al (2010) A draft sequence of the Neandertal genome. Science 328(5979):710–722PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2012

Authors and Affiliations

  1. 1.Global Health InstituteEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland

Personalised recommendations