Stem Cells and the Right Ventricle

  • Luigi Anastasia
  • Marco Piccoli


Stem cell research has been one of the most investigated fields by the scientific community in the past decade. This unprecedented attention has been mainly caused by the number of possible applications of stem cells in regenerative medicine, which has created expectations of curing widespread diseases like Parkinson's, Alzheimer's, and heart failure. In particular, regenerating the heart, which is one of the least regenerative organs of the body, has been an incredible challenge. However, recent discoveries have proven that also the heart is a selfrenewing organ characterized by resident cardiac stem cells (CSCs) stored in niches [1].


Right Ventricle Adult Stem Cell Stem Cell Therapy Stem Cell Research Arrhythmogenic Right Ventricular Cardiomyopathy 


  1. 1.
    Urbanek K, Cesselli D, Rota M et al (2006) Stem cell niches in the adult mouse heart. Proc Natl Acad Sci USA 103:9226-9231PubMedCrossRefGoogle Scholar
  2. 2.
    Cesselli D, Beltrami AP, D'Aurizio F et al (2011) Effects of age and heart failure on human cardiac stem cell function. Am J Pathol 179:349-366PubMedCrossRefGoogle Scholar
  3. 3.
    Bearzi C, Rota M, Hosoda T et al (2007) Human cardiac stem cells. Proc Natl Acad Sci USA 104:14068-4073PubMedCrossRefGoogle Scholar
  4. 4.
    Bearzi C, Leri A, Lo Monaco F et al (2009) Identification of a coronary vascular progenitor cell in the human heart. Proc Natl Acad Sci USA 106:15885-90PubMedCrossRefGoogle Scholar
  5. 5.
    Rota M, Padin-Iruegas ME, Misao Y et al (2008) Local activation or implantation of cardiac progenitor cells rescues scarred infarcted myocardium improving cardiac function. Circ Res 103:107-116PubMedCrossRefGoogle Scholar
  6. 6.
    Jessup M, Brozena S (2003) Heart failure. N Engl J Med 348:2007-2018Google Scholar
  7. 7.
    Blum B, Benvenisty N (2008) The tumorigenicity of human embryonic stem cells. Adv Cancer Res 100:133-158PubMedCrossRefGoogle Scholar
  8. 8.
    Chen S, Zhang Q, Wu X et al (2004) Dedifferentiation of lineage-committed cells by a small molecule. J Am Chem Soc 126:410-401PubMedCrossRefGoogle Scholar
  9. 9.
    Anastasia L, Sampaolesi M, Papini N et al (2006) Reversine-treated fibroblasts acquire myogenic competence in vitro and in regenerating skeletal muscle. Cell Death Differ 13:2042-2051PubMedCrossRefGoogle Scholar
  10. 10.
    Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663-676PubMedCrossRefGoogle Scholar
  11. 11.
    Noisa P, Parnpai R (2011) Technical challenges in the derivation of human pluripotent cells. Stem Cells Int 2011:907-961Google Scholar
  12. 12.
    Ben-David U, Benvenisty N, Mayshar Y (2010) Genetic instability in human induced pluripotent stem cells: classification of causes and possible safeguards. Cell Cycle 9:4603-4604PubMedCrossRefGoogle Scholar
  13. 13.
    Anastasia L, Pelissero G, Venerando B, Tettamanti G (2010) Cell reprogramming: expectations and challenges for chemistry in stem cell biology and regenerative medicine. Cell Death Differ 17:1230-1237PubMedCrossRefGoogle Scholar
  14. 14.
    Anastasia L, Piccoli M, Garatti A et al (2011) Cell reprogramming: a new chemical approach to stem cell biology and tissue regeneration. Curr Pharm Biotechnol 12:146-150PubMedCrossRefGoogle Scholar
  15. 15.
    Fania C, Anastasia L, Vasso M et al (2009) Proteomic signature of reversine-treated murine fibroblasts by 2-D difference gel electrophoresis and MS: Possible associations with cell signalling networks. Electrophoresis 30:2193-2206PubMedCrossRefGoogle Scholar
  16. 16.
    Sadek H, Hannack B, Choe E et al (2008) Cardiogenic small molecules that enhance myocardial repair by stem cells. Proc Natl Acad Sci U S A 105:6063-6068PubMedCrossRefGoogle Scholar
  17. 17.
    Quattrocelli M, Palazzolo G, Agnolin I et al (2011) Synthetic sulfonyl-hydrazone-1 positively regulates cardiomyogenic microRNA expression and cardiomyocyte differentiation of induced pluripotent stem cells. J Cell Biochem 112:2006-2014PubMedCrossRefGoogle Scholar
  18. 18.
    Laflamme MA, Murry CE (2011) Heart regeneration. Nature 473:326-335PubMedCrossRefGoogle Scholar
  19. 19.
    Tallini YN, Greene KS, Craven M et al (2009) c-kit expression identifies cardiovascular precursors in the neonatal heart. Proc Natl Acad Sci U S A 106:1808-1813PubMedCrossRefGoogle Scholar
  20. 20.
    Kubo H, Jaleel N, Kumarapeli A et al (2008) Increased cardiac myocyte progenitors in failing human hearts. Circulation 118:649-657PubMedCrossRefGoogle Scholar
  21. 21.
    Beltrami AP, Barlucchi L, Torella D et al (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114:763-776PubMedCrossRefGoogle Scholar
  22. 22.
    Orlic D, Kajstura J, Chimenti S et al (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410:701-705PubMedCrossRefGoogle Scholar
  23. 23.
    Balsam LB, Wagers AJ, Christensen JL et al (2004) Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 428:668-673PubMedCrossRefGoogle Scholar
  24. 24.
    Anversa P, Kajstura J, Leri A, Bolli R (2006) Life and death of cardiac stem cells: a paradigm shift in cardiac biology. Circulation 113:1451-1463PubMedCrossRefGoogle Scholar
  25. 25.
    Yoon YS, Wecker A, Heyd L et al (2005) Clonally expanded novel multipotent stem cells from human bone marrow regenerate myocardium after myocardial infarction. J Clin Invest 115:326-338PubMedGoogle Scholar
  26. 26.
    Chen SL, Fang WW, Ye F et al (2004) Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. Am J Cardiol 94:92-95PubMedCrossRefGoogle Scholar
  27. 27.
    Hare JM, Traverse JH, Henry TD et al (2009) A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. J Am Coll Cardiol 54:2277-2286PubMedCrossRefGoogle Scholar
  28. 28.
    Di Felice V, Zummo G (2009) Tetralogy of fallot as a model to study cardiac progenitor cell migration and differentiation during heart development. Trends Cardiovasc Med 19:130-135PubMedCrossRefGoogle Scholar
  29. 29.
    Yerebakan C, Sandica E, Prietz S et al (2009) Autologous umbilical cord blood mononuclear cell transplantation preserves right ventricular function in a novel model of chronic right ventricular volume overload. Cell Transplant 18:855-868PubMedCrossRefGoogle Scholar
  30. 30.
    Lombardi R, Marian AJ (2010) Arrhythmogenic right ventricular cardiomyopathy is a disease of cardiac stem cells. Curr Opin Cardiol [Epub ahead of print]Google Scholar
  31. 31.
    Ai D, Fu X, Wang J et al (2007) Canonical Wnt signaling functions in second heart field to promote right ventricular growth. Proc Natl Acad Sci U S A 104:9319-9324PubMedCrossRefGoogle Scholar
  32. 32.
    D'Amario D, Fiorini C, Campbell PM et al (2011) Functionally competent cardiac stem cells can be isolated from endomyocardial biopsies of patients with advanced cardiomyopathies. Circ Res 108:857-861PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2012

Authors and Affiliations

  • Luigi Anastasia
    • 1
    • 2
  • Marco Piccoli
  1. 1.Department of Medical Chemistry, Biochemistry and BiotechnologyUniversity of MilanItaly
  2. 2.IRCCS Policlinico San DonatoSan Donato Milanese (Mi)Italy

Personalised recommendations