Skip to main content

Population dynamics in a spatial Solow model with a convex-concave production function

  • Chapter
Mathematical and Statistical Methods for Actuarial Sciences and Finance

Abstract

In this paper the classical Solow model is extended, by considering spatial dependence of the physical capital and population dynamics, and by introducing a nonconcave production function. The physical capital and population evolution equations are governed by semilinear parabolic differential equations which describe their evolution over time and space. The convergence to a steady state according to different hypotheses on the production function is discussed. The analysis is focused on an S-shaped production function, which allows the existence of saddle points and poverty traps. The evolution of this system over time, and its convergence to the steady state is described mainly through numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barro, R.J, Sala-I-Martin, X.: Economic Growth. MIT Press, Boston (2004)

    Google Scholar 

  2. Camacho, C., Zou, B.: The spatial Solow model, Econ. Bull. 18, 1–11 (2004)

    Google Scholar 

  3. Camacho, C., Zou B., Briani, M.: On the dynamics of capital accumulation across space, Eur. J. Oper. Res. 186(2), 451–465 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Capasso, V.: Mathematical Structures of Epidemic Systems, Lect. Notes Biomath., 97, 2nd ed., Springer, Heidelberg (2009)

    Google Scholar 

  5. Capasso, V., Engbers, R., La Torre, D.: On a spatial Solow-model with technological diffusion and nonconcave production function, Nonlinear Anal. Real World Appl. 11(5), 3858–3876 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Capasso, V., Maddalena, V.: Saddle point behaviour for a reaction-diffusion system: application to a class of epidemic models, Math. Comp. Simul. 24, 540–547 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  7. Capasso, V., Wilson, R.E.: Analysis of a reaction-diffusion system modeling man-environment-man epidemics, SIAM J. Appl. Math. 57(2), 327–346 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Clark, C.W.: Economically optimal policies for the utilization of biologically renewable resources, Math. Biosci. 12, 245–260 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fujita, M., Krugman, P., Venables, A.: The Spatial Economy. Cities, Regions and International Trade. MIT Press, Cambridge, MA (1999)

    Google Scholar 

  10. Henry, D.: Geometric Theory of Semilinear Parabolic Equations, Lect. Notes Math., 90, Springer, New York (1981)

    Google Scholar 

  11. Jones, C.I., Williams, J.C.: Too much of a good thing? The economics of investment in R&D, J. Econ. Growth, 5(1), 65–85 (2000)

    Article  MATH  Google Scholar 

  12. Krugman, P.: Increasing returns and economic geography, J. Polit. Econ. 99, 483–499 (1991)

    Article  Google Scholar 

  13. Martin Jr, R.H.: Asymptotic stability and critical points for nonlinear quasimonotone parabolic systems, J. Differ. Equ. 30, 391–423 (1978)

    Article  MATH  Google Scholar 

  14. Mora, X.: Semilinear parabolic problems define semiflows on C k spaces, Trans. Am. Math. Soc. 278(1), 21–55 (1983)

    MathSciNet  MATH  Google Scholar 

  15. Mulligan, C.B., Sala-i-Martin, X.: Transitional dynamics in two-sector models of endogenous growth, Q. J. Econ. 108(3), 739–773 (1993)

    Article  Google Scholar 

  16. Oliver, F.R.: Notes on the logistic curve for human populations, J. R. Stat. Soc. Ser. A 145(3), 359–363 (1982)

    Article  MathSciNet  Google Scholar 

  17. Romer, P.M.: Endogenous technological change, J. Polit. Econ. 98(5), 71–S102 (1990)

    Article  Google Scholar 

  18. Sachs, J.D.: The strategic significance of global inequality, Wash. Q. 24(3), 187–198 (2001)

    Google Scholar 

  19. Skiba, A.K.: Optimal growth with a convex-concave production function, Econom. 46(3), 527–539 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  20. Smoller, J.: Shock-waves and Reaction Diffusion Systems. Springer, New York (1983)

    Book  Google Scholar 

  21. Solow, R.: A contribution to the theory of economic growth. Q. J. Econ. 70, 65–94 (1956)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Engbers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Italia

About this chapter

Cite this chapter

Capasso, V., Engbers, R., La Torre, D. (2012). Population dynamics in a spatial Solow model with a convex-concave production function. In: Perna, C., Sibillo, M. (eds) Mathematical and Statistical Methods for Actuarial Sciences and Finance. Springer, Milano. https://doi.org/10.1007/978-88-470-2342-0_8

Download citation

Publish with us

Policies and ethics