Multiaxial Fatigue

  • Pietro Paolo Milella


Uniaxial loads are not that common as it would be expected. In most real cases stresses acting on a work piece or on a part of it are not uniaxial even dough the external load are uniaxial. It suffices to consider a component with a hole or a discontinuity where localized triaxial stress state develops. Besides the localized triaxiality, multiaxial loading represents the most general working condition for real components subjected to stresses acting simultaneously in different directions or, which is equivalent, to combined bending and torsion


Fatigue Strength Fatigue Limit Equivalent Stress Maximum Shear Stress 304L Stainless Steel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Lanza, G.: Strength of shafting subjected to both twisting and bending. Trans ASME 8, 121–196 (1886)Google Scholar
  2. 2.
    Mason, W. (Ed.): Alternating stress experiments. IMechE (1917)Google Scholar
  3. 3.
    Haigh, B.P.: The thermodynamic theory of mechanical fatigue and hysteresis in metals. Rep. pp. 358–368. British Association for the Advancement of Science, Liverpool (1923)Google Scholar
  4. 4.
    Nishiara, T., Kawamoto, M.: The strength of metals under combined alternating bending and torsion. Memoirs, College of Engineering 10, Kyoto Imp. University, Japan (1941)Google Scholar
  5. 5.
    Gough, H.J.: Engineering steels under combined cyclic and static stresses. J. Appl. Mech. 72, 113–125 (1950)Google Scholar
  6. 6.
    Gough, H.J., Pollard, H.V., Clenshaw, W.J.: Some experiments on the resistance of metals to fatigue under combined stresses. Aero Research Council, RSM 2522, Part 1, H.M.S.O., London (1951)Google Scholar
  7. 7.
    Radaj, D., Sonsino, C.M.: Fatigue assessment of welded joints by local approaches. Abington Publishing, Cambridge (1998)Google Scholar
  8. 8.
    Gough, H.J.: The fatigue of metals. Scott, Greenwood and Son, London (1924)Google Scholar
  9. 9.
    Moore, H.F., Kommers, J.B.: The fatigue of metals. McGraw-Hill, New York (1927)Google Scholar
  10. 10.
    Cazaud, R.: Fatigue of Metals. Chapmann and Hall, London (1953)Google Scholar
  11. 11.
    Mann, J.Y.: Fatigue notch sensitivity of annealed copper. Proc. ASTM 60, 602 (1956)Google Scholar
  12. 12.
    Snow, A.L., Langer, B.F.: Low-cycle fatigue of large diameter bolts. J. Eng. Ind. 89(B-1), 53 (1967)CrossRefGoogle Scholar
  13. 13.
    Forrest P.G., Tate A.E.L.: The influence of grain size on the fatigue behavior of 70/30 Brass. J. Inst. Met. 93, 438 (1964–1965)Google Scholar
  14. 14.
    Frost, N.E., Marsh, K.J., Pook, L.P.: Metal Fatigue. Clarendon Press, Oxford (1974)Google Scholar
  15. 15.
    Bundy, R.W., Marin, J.: Fatigue strength of 14S-T4 aluminum alloy subjected to biaxial stresses. Proc. Am. Soc. Test. Mater. 52, 755 (1954)Google Scholar
  16. 16.
    Savaidis, G., Seeger, T.: Consideration of multiaxiality in fatigue life prediction using the closure concept. Fatigue Fract. Engng. Mater. Struct. 20(7), 985–1000 (1997)CrossRefGoogle Scholar
  17. 17.
    Papadopulos, I.V., Davoli, P., Gorla, C., Filippini, M., Bernasconi, A.: A comparative study of multiaxial high-cycle fatigue criteria for metals. Int. J. Fatigue 19, 219–235 (1996)CrossRefGoogle Scholar
  18. 18.
    Manson, S.S., Halford, G.R.: Multiaxial low-cycle fatigue of type 304 stainless steel. ASME J. Engng. Mater. Techn, 283–285 (1977)Google Scholar
  19. 19.
    Zamrik, S.Y., Mirdamadi, M., Davis, D.C.: A proposed model for biaxial fatigue analysis using the triaxiality factor concept. Adv. Multiaxial fatigue ASTM STP 1191, 85–106 (1993)CrossRefGoogle Scholar
  20. 20.
    Marin J.: Proceedings of International Conference on Fatigue of Metals, Institution of Mechanical Engineering, pp. 184–194, London (1956)Google Scholar
  21. 21.
    Sines, G.: Behavior of metals under complex static and alternating stresses. In: Sines, G., Waisman, J.L. (eds.) Metal fatigue, pp. 145–169. McGraw-Hill, New York (1959)Google Scholar
  22. 22.
    Sines, G., Ohgi, G.: Fatigue criteria under combined stresses or strains. Trans. ASTM J. Engng. Mater. Technol 103, 82 (1891)CrossRefGoogle Scholar
  23. 23.
    Crossland B.: Proceedings of International Conference on Fatigue of Metals, Institution of Mechanical Engineering, pp. 138–149, London (1956)Google Scholar
  24. 24.
    Kakuno, H., Kawada, Y.: A new criterion of fatigue strength of a round bar subjected to combined static and repeated bending and torsion. Fatigue Eng. Mater. Struct. 2, 229–236 (1979)CrossRefGoogle Scholar
  25. 25.
    Papadopoulos, I.V.: A new criterion of fatigue strength for out-of-phase bending and torsion of hard metals. Int. J. of Fatigue 16, 377–384 (1994)CrossRefGoogle Scholar
  26. 26.
    You, B.R., Lee, S.B.: A critical review on multiaxial fatigue assessments of metals. Int. J. of Fatigue 18, 235–244 (1996)CrossRefGoogle Scholar
  27. 27.
    Kaufman, R.P., Topper, T.: The influence of static mean stresses applied normal to the maximum shear planes in multiaxial fatigue. In: Carpinteri A., de Freitas M., Spagnoli A. (Eds.): Biaxial/Multiaxial fatigue and fracture. Elsevier, Oxford, 133 (2003)Google Scholar
  28. 28.
    Findley, W.N.: A theory for the effect of mean stress on fatigue of metals under combined torsion and axial load or bending. Trans. ASME, J. Eng. Industry 81, 301–306 (1959)Google Scholar
  29. 29.
    Meggiolaro, M.A., de Castro J.T.P., de Olivera Miranda, A.C.: Evaluation of multiaxial stress-strain models and fatigue life prediction methods under proportional loadings. In: da Costa, M., Alves, M. (Eds.): Mechanics of solids in Brazil. Brazilian Soc. of Mech. Sci. Engn. (2009)Google Scholar
  30. 30.
    Matake, T.: An explanation on fatigue limit under combined stress. Bull. JSME 20, 257–263 (1977)CrossRefGoogle Scholar
  31. 31.
    Brown, M.W., Miller, K.J. (Eds.): A theory for fatigue under multiaxial stress strain condition. Inst. Mech. Eng. 745–755 (1973)Google Scholar
  32. 32.
    Fatemi, A., Socie, D.F.: A critical plane approach to multiaxial fatigue damage including out-phase loading. Fatigue Fract. Engng. Mater. Struct. 11, 149–165 (1988)CrossRefGoogle Scholar
  33. 33.
    Smith, R.N., Watson, P., Topper, T.H.: A stress-strain parameter for the fatigue of metals. J. Mater. 5(4), 767–778 (1970)Google Scholar
  34. 34.
    McDiarmid, D.L.: A general criterion for high cycle multiaxial fatigue failure. Fatigue Fract. Eng. Mater. Struct. 14, 429–454 (1991)CrossRefGoogle Scholar
  35. 35.
    McDiarmid, D.L.: A general criterion for high cycle multiaxial fatigue failure. Fatigue Fract. Eng. Mater. Struct. 17, 1475 (1994)CrossRefGoogle Scholar
  36. 36.
    Fatemi, A., Stephens, R.I.: Biaxial fatigue of 1045 steel under in-phase and 90° out-of-phase loading. SAE AEXX: multiaxial fatigue (1987)Google Scholar
  37. 37.
    Zamrik, S.Y., Frishmuth, R.E.: The effect of out-of-phase biaxial strain cycling on low cycle fatigue. J. Exp. Mech. 13, 204–208 (1973)CrossRefGoogle Scholar
  38. 38.
    Kanazawa, K., Miller, K.J., Brown, M.V.: Low cycle fatigue under out-of-phase loading conditions. J. Engng Mater. Tech. 99, 222–228 (1977)CrossRefGoogle Scholar
  39. 39.
    Socie, D.F.: Multiaxial fatigue damage models. J. Engng Mater. Tech. 109, 293–298 (1987)CrossRefGoogle Scholar
  40. 40.
    Carpinteri, A., Spagnoli, A.: Multiaxial high-cycle fatigue criterion for hard metals. Int. J. Fatigue 23, 135–145 (2001)CrossRefGoogle Scholar
  41. 41.
    Papadopoulos, I.V., Davoli, P., Gorla, C., Fillippini, M., Bernasconi, A.: A comparative study of multiaxial high-cycle fatigue criteria for metals. Int. J. Fatigue 19(3), 219–235 (1997)CrossRefGoogle Scholar
  42. 42.
    Kanazawa, K., Miller, K.J., Brown, M.W.: Cyclic deformation of 1 % Cr-Mo-V steel under out-of-phase loads. Fatigue Eng. Mater. Struct. 2, 217–228 (1979)CrossRefGoogle Scholar
  43. 43.
    Socie, D.F., Marquis, G.B.: Multiaxial fatigue, p. 101. SAE, Inc, Warrendale (2000)Google Scholar
  44. 44.
    Itoh, T., Sakane, M., Ohnami, M., Socie, D.F.: Non-proportional low cycle fatigue criterion for type 304 stainless steel. ASME J. Eng. Mater. Technol 117, 285–292 (1995)CrossRefGoogle Scholar
  45. 45.
    Kida, S., Itoh, T., Sakane, M., Ohnami, M., Socie, D.F.: Dislocation structure and non-proportional hardening of type 304 stainless steel. Fatigue Fract. Eng. Mater. Struct. 20, 1375–1386 (1997)CrossRefGoogle Scholar
  46. 46.
    Itoh, T., Kameoka, M., Obataya, Y.: A new model for describing a stable cyclic stress-strain relationship under non-proportional loading based on activation state of slip systems. Fatigue Fract. Eng. Mater. Struct. 27, 957–966 (2004)CrossRefGoogle Scholar
  47. 47.
    Shamsaei, N.: Fatigue life prediction under general multiaxial loading employing simple material properties. Advisor Ali Fatemi, SAE Fatigue Design and Evaluation committee Meeting, Chrysler Head. Tech. Center, October 19 (2010)Google Scholar
  48. 48.
    Borodii, M.V.: Obtaining a low-cycle fatigue strain criterion. Strength Mater. 33(3), 217–223 (2001)CrossRefGoogle Scholar
  49. 49.
    Borodii, M.V., Shukaev, S.M.: Additional cyclic strain hardening and its relation to material structure, mechanical characteristics, and life time. Int. J. Fatigue 29, 1184–1191 (2007)MATHCrossRefGoogle Scholar
  50. 50.
    Shamsaei, N.: A dissertation entitled multiaxial fatigue and deformation including non-proportional hardening and variable amplitude loading effects, submitted to the graduate faculty as partial fulfillment of the requirements for the doctor of philosophy degree in engineering, The University of Toledo (2010)Google Scholar
  51. 51.
    Shamsaei, N., Fatemi, A.: Effect of hardness on multiaxial fatigue behavior and some simple approximations for steels. J. Fatigue Fract. Eng. Mater. Struct. 32, 631–646 (2009)CrossRefGoogle Scholar
  52. 52.
    Liu, J., Zenner, H.: Fatigue limit of ductile metals under multiaxial loading. In: Carpinteri, A., de Freitas, M., Spagnoli, A. (Eds.): Biaxial/Multiaxial fatigue and fracture, Elsevier, Oxford 147–164 (2003)Google Scholar
  53. 53.
    Heidenreich, R., Zenner, H., Richter, I.: Dauerschwingfestigkeit bei Mehrachsiger Beanspruchung. Forschungshefte FKM, Heft, Oxford, 105 (1983)Google Scholar
  54. 54.
    Lempp, W.: Festigkeitsverhalten von Stahlen bei Mehrachsiger Dauerschwingbeanspruchung durch Norrnalspannungen mit Uberlagerten Phasengleichen und Phasenverschobenen Schubspannungen. Diss. Uni. Stuttgart (1977)Google Scholar
  55. 55.
    Mielke, S.: Festigkeitsverhalten Metallischer Werkstoffe unter Zweiachsig Schwingender Beanspmchung mit Verschiedenen Spannungszeitverlaufen. Diss. RWTHAachen (1980)Google Scholar
  56. 56.
    Nishihara, T., Kawamoto, M.: The strength of metal under combined alternating bending and torsion with phase difference. Mem. of the College of Eng., Kyoto Imperial University, 11, 85 (1945)Google Scholar
  57. 57.
    Issler, L.: Festigkeitsverhalten Metallischer Werkstoffe bei Mehrachsiger Phasenverschobener Schwingbeanspruchung. Diss. Uni. Stuttgart (1973)Google Scholar
  58. 58.
    Bhongbhibhat, T.: Festigkeitsverhalten von Stiihlen unter Mehrachsiger Phasenverschobener Schwingbeanspruchung mit Unterschiedlichen Schwingungsformen und Frequenzen. Diss. Uni. Stuttgart (1986)Google Scholar
  59. 59.
    Neugebauer, J.: Fatigue strength of cast iron materials under multiaxial stresses of different frequencies. Report FB-175, Fraunhofer Institute für Betribsfestigkeit, Darmstadt (1986)Google Scholar

Copyright information

© Springer-Verlag Italia 2013

Authors and Affiliations

  1. 1.Department of Civil and Mechanical EngineeringUniversity of CassinoCassino (Rome)Italy

Personalised recommendations