Cumulative Damage: Cycle Counting and Life Prediction



Loads so far analyzed were of constant amplitude. but constant amplitude loads represent a particularity that rarely happens in real life of components. Usually, cyclic loads have variable amplitudes that are referred to as the load spectrum or time history. This chapter addresses the huge and difficult issue of variable amplitude loads and provides the basic tools to analyze the fatigue strength of components subjected to whatsoever load spectrum. Impact fatigue is also treated.


Power Spectral Density Fatigue Damage Fatigue Limit Stress Amplitude Load Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Petrone, N., Saraceni, M., Crugnola, F.: Sviluppo di un simulatore di strada per prove complesse su forcelle motociclistiche. Associazione Italiana Analisi delle Sollecitazioni, XXXIV Convegno Nazionale, Milano, 14–17 settembre (2005)Google Scholar
  2. 2.
    Schijve, J.: Fatigue of Structures and Materials. Kluwer Academic Publishers, NY (2004)Google Scholar
  3. 3.
    Matsuishi, M., Endo, T.: Fatigue of metals subjected to various stress. In: Preceedings of JSME, Fukuoka, Japan (1968)Google Scholar
  4. 4.
    Dowling, N.E.: Fatigue at notches and the local strain and fracture mechanics approaches. Am. Soc. Test. Mater. ASTM 677 (1979)Google Scholar
  5. 5.
    Palmgren, A.: The fatigue life of roll-bearings (in German). Z. Ver. Deut. Ing. 68, 339–341 (1924)Google Scholar
  6. 6.
    Langer, B.F.: Fatigue failure from stress cycles of varying amplitude. J. Appl. Mech. 59, A160–A162 (1937). (Table 2.4 four-level step-stress fatigue test data )Google Scholar
  7. 7.
    Miner, M.A.: Cumulative damage in fatigue. J. Appl. Mech. 12, A159 (1945)Google Scholar
  8. 8.
    Dolan T.J., Richart F.E., Work C.E.: Influence of fluctuations in stress amplitude on the fatigue of metals. In: ASTM Proceedings, vol. 49 (1949)Google Scholar
  9. 9.
    Marco, S.M., Starkey, W.L.: ASME Trans. 76, 627 (1954)Google Scholar
  10. 10.
    Corten, H.T., Sinclair, G.M., Dolan, T.J.: In: ASTM Proceedings, vol. 54, p. 737 (1954)Google Scholar
  11. 11.
    Plantema, F.J.: Colloquium on Fatigue. Springer-Verlag, Berlin (1956)Google Scholar
  12. 12.
    Miner, M.A.: Estimation of fatigue life with particular enphasis on cumulative damage. In: Sines, G., Waisman, J.L. (eds.) Metal Fatigue, Chap. 12. McGraw-Hill, New York (1959)Google Scholar
  13. 13.
    Richart, F.E., Newmark, N.M.: In: Proceedings ASTM, vol. 48, p. 767 (1948)Google Scholar
  14. 14.
    Newmark, N.M.: Fatigue and Brittle Fracture. Wiley, New York (1950)Google Scholar
  15. 15.
    Jacoby, G.: Vergleich der Lebensdauer aus Betriebsfestigkeits, Einzelflug und Digital Programmierten Random-Versuchen sowie nach der Linearen Shadens-Accumulationshypothese. VDI-Z Fortschritts-Berichte: Labensdaueranalyse bei Unregelmaßig Schwankender Beanspruchung (random Load Fatigue) (1969)Google Scholar
  16. 16.
    Ahrensdorf, K.: Fatigue Design Practice. In: Specialist Meeting on design against Fatigue, Conference Proceedings AGARD–CP-141, pp. 2–5 (1973)Google Scholar
  17. 17.
    Corten, H.T., Dolan T.J.: Cumulative fatigue damage. In: Proceedings of International Conference on Fatigue of Metals, Institution of Mechanical Engineers, ASME and IME, p. 235 (1956)Google Scholar
  18. 18.
    Spitzer R., Corten H.T.: In: Proceedings ASTM, vol. 61, p. 719 (1961)Google Scholar
  19. 19.
    Freudenthal, A.M.: In: Symposium on Acoustic Fatigue, ASTM STP-284, p. 26 (1960)Google Scholar
  20. 20.
    Lemaitre, J., Plumtree, A.: J. Eng. Mater. Technol. 101, 284–292 (1979)CrossRefGoogle Scholar
  21. 21.
    Marin, J.: Mechanical Behavior of Engineering Materials. Prentice-Hall, Englewood Cliffs NJ (1962)Google Scholar
  22. 22.
    Henry, D.L.: Theory of fatigue damage accumulation in steel. ASME Trans. 77, 913 (1955)Google Scholar
  23. 23.
    Grover, H.J.: An observation concerning the cycle ratio in cumulative damage. ASTM STP 274, 120–124 (1960)Google Scholar
  24. 24.
    Manson, S.S., Halford, G.R.: Practical implementation of the double linear damage rule and damage curve approach for testing cumulative fatigue damage. Int. J. Fract. 17(2), 169–192 (1981)CrossRefGoogle Scholar
  25. 25.
    Manson, S.S., Halford, G.R.: Re-examination of cumulative fatigue damage analysis-an engineering perspective. Eng. Fract. Mech. 25(5/6), 359–371 (1986)Google Scholar
  26. 26.
    Kachanov, L.M.: On the time to failure under creep condition. Int. J. Fract. 97(1–4), 11–18 (1999)CrossRefGoogle Scholar
  27. 27.
    Lemaitre, J., Chaboche, J.L.: Mechanics of Solid Materials. Cambridge University Press (1990)Google Scholar
  28. 28.
    O’Connor, B.P.D., Plumtree, A.: Fatigue crack propagation behavior and damage accumulation relationships in an aluminum alloy. In: Fracture Mechanics: 19th Symposium, ASTM STP 969, pp. 787–799 (1988)Google Scholar
  29. 29.
    Schijve, J.: The Accumulation of fatigue damage in aircraft materials and structures. In: Symposium on Random Load fatigue, Conference Proceedings AGARD-CP-118, pp. 3–84 (1972)Google Scholar
  30. 30.
    Gassner, E.: Strength experiments under cyclic loading in aircraft structures. Luftwissen 6, pp. 61–64 (in German) (1939)Google Scholar
  31. 31.
    Schijve, J., Jacobs, F.A.: Research on cumulative damage in fatigue of riveted aluminum alloy joints.In: National Aeronautical Research Institute, Amsterdam, Report 1999 (1956)Google Scholar
  32. 32.
    Naumann, E.C., Hardrath, H.R., Guthrie, E.C.: Axial load fatigue tests of 2024-T3 and 7075-T6 aluminum alloy sheet specimens under constant and variable-amplitude-loads. In: Report TN D-212, NASA (1959)Google Scholar
  33. 33.
    Wirsching, P.H., Light, M.C.: Fatigue under wide band random stresses. ASCE J. Struct. Div. 106, 1593–1607 (1980)Google Scholar
  34. 34.
    Oritz, K., Chen, N. K.: Fatigue damage prediction for stationary wide-band stresses. In: Presented at the 5th International Conference on the Applications of Statistics and Probability in Civil Engineering, Vancouver, Canada (1987)Google Scholar
  35. 35.
    Dirlik, T.: Application of Computers in Fatigue Analysis. Ph.D. Thesis, Warwick University (1985)Google Scholar
  36. 36.
    Bishop, N.W.M.: The Use of Frequency Domain Parameters to Predict Structural Fatigue. Ph.D. Thesis, Warwick University (1988)Google Scholar
  37. 37.
    Bishop, N.W.M., Sherratt, F.: Fatigue life prediction from power spectral density data, part 2: Recent development. Envi Eng 2(1–2), 5–10 (1989)Google Scholar
  38. 38.
    Bishop, N.W.M.: Spectral methods for estimating the integrity of structural components subjected to random loading. In: Carpinteri, A. (ed.) Handbook of Fatigue Crack Propagation in Metallic Structures, pp. 1685–1720. Elsevier, Dordrecht (1994)Google Scholar
  39. 39.
    Iguchi, H., Tanaka, K., Taira, S.: Failure mechanisms in impact fatigue of metals. Fatigue Eng. Mater. Struct. 2, 165–176 (1979)CrossRefGoogle Scholar
  40. 40.
    Manjoine, M.J.: Influence of rate of strain and temperature on yield strength of mild steel. J. Appl. Mech. 66, A211–A218 (1944)Google Scholar
  41. 41.
    Meyers, M.A.: Dynamic Behavior of Materials. Wiley, New York (1994)MATHCrossRefGoogle Scholar
  42. 42.
    Tanaka, T., Nakayama, H.: Studies on impact fatigue. J. Jpn. Soc. Mater. Sci. 23(252), 1483 (1974)Google Scholar
  43. 43.
    Okabe, N., Yano, T., Mori, T.: Impact torsional fatigue strength of carbon steel. Trans. Jpn. Soc. Mech. Eng. 449(A), 41 (1984)Google Scholar
  44. 44.
    Tanaka, T., Nakayama, H.: On impact fatigue crack growth behavior of metallic materials. J. Jpn. Soc. Mater. Sci. 34(387), 1483 (1985)CrossRefGoogle Scholar
  45. 45.
    Nose, H., Sakamoto, I., Nakayama, H.: Mater. Syst. 6, 181 (1987)Google Scholar
  46. 46.
    Tanaka, T., Nakayama, H., Mori, T.: Int. J. JSME, Series 1, 31(4), 760 (1988)Google Scholar
  47. 47.
    Okabe, N. et al.: Fatigue ’84, vol. 2. U.K.: Engineering Advance Advisory Services ltd, p. 1181 (1984)Google Scholar

Copyright information

© Springer-Verlag Italia 2013

Authors and Affiliations

  1. 1.Department of Civil and Mechanical EngineeringUniversity of Cassino ItalyCassino (Rome)Italy

Personalised recommendations