Strain-Based Fatigue Analysis Low Cycle Fatigue



When the plastic component the cyclic strain cannot be neglected and, indeed, prevails over the elastic one, stresses are no longer uniquely determined and must be put aside in the fatigue analysis. This is the case of structural discontinuities in general and of notches, in particular, where local strains can go well beyond the elastic limit of the material. But it is also the case of components that are subjected to very large cyclic strains, like jet engine turbine blades. This is the field of low cycle fatigue where the material undergoes hysteresis loop and damage is introduced almost immediately. Strain life methods of fatigue analysis must be used that replace those considered in the stress life analysis of the high cycle fatigue domain.


Hysteresis Loop Strain Amplitude High Cycle Fatigue Cyclic Strain Notch Root 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Dowling, N.E., Brose, W.R., Wilson, W.K.: A discussion of local strain approach to notched member fatigue life prediction. Westinghouse Scientific Paper 76-1E7-PALFA-P1, Feb 1976Google Scholar
  2. 2.
    Tucker, L.E., Landgraf, R.W., Brose, W.R.: SAE Report 740279, Automotive Engineering Congress, (1974)Google Scholar
  3. 3.
    Morrow, J.D.: Internal friction, damping and cyclic plasticity. American Society for Testing and Materials, ASTM STP-378, pp. 45–87 (1965)Google Scholar
  4. 4.
    Landgraf, R.W., Morrow, J.D., Endo, T.: Determination of the cyclic stress strain curve. J. Mater., ASTM 4(1), 176–188 (1969)Google Scholar
  5. 5.
    Martin, J.F., Topper, T.H., Sinclair, G.M.: Computer based simulation of cyclic stress-strain behavior with applications to fatigue. Mater. Res. Stand., ASTM 11(2), 23–29 (1971)Google Scholar
  6. 6.
    Wetzel, R.M.: A method of fatigue damping analysis. Ph.D. Thesis, Department of Civil Engineering, University of Waterloo, Ontario, Canada; Technical report SR 71-107, Scientific Research Staff, Ford Motor Co., Dearborn, Michigan (1971)Google Scholar
  7. 7.
    Basquin, O.H.: The exponential law of endurance tests. Proceedings ASTM 10(II), 625 (1910)Google Scholar
  8. 8.
    Coffin Jr, L.F.: A study of the effects of cyclic thermal stresses on ductile metal. Trans. ASME 76, 931 (1954)Google Scholar
  9. 9.
    Tavernelli, J.F., Coffin Jr, L.F.: A compilation and interpretation of cyclic strain fatigue tests on metals. Trans. ASM 51, 438 (1959)Google Scholar
  10. 10.
    Smith, R.W., Hirschberg, M.H., Manson, S.S.: NASA TN D-1574 (1963)Google Scholar
  11. 11.
    Manson, S.S., Hirschberg, M.H.: Fatigue: An Interdisciplinary Approach. Syracuse University Press, NY (1964)Google Scholar
  12. 12.
    Landgraf R.W., Morrow J.D.: Achievement of high fatigue resistance in metals and alloys. ASTM STP-467, p. 3 (1970)Google Scholar
  13. 13.
    Tucker, L., Bussa, S.: The SAE cumulative fatigue damage test program. Society of Automotive Engineers, Paper no. 750038, Automotive Engineering Congress exposition, Detroit (1965)Google Scholar
  14. 14.
    Milella, P.P., Pelilli, G., Traficante M.: Comportamento a Fatica di un Acciaio AISI 316. ENEA, Rapporto Interno QE00-1ET4B-84004-TBA (1984)Google Scholar
  15. 15.
    Landgraf, R.W.: High fatigue resistance in metals and alloys. Am. Soc. Test. Mater., ASTM STP 776, 33–43 (1982)Google Scholar
  16. 16.
    Terrell, J.B., Cullen, W.H.: Fatigue life response of ASME SA 106 B steel in pressurized water reactor environments. In: Proceedings of the Third IAEA Specialist’s Meeting on Subcritical Crack Growth. Moscow, US-NRC NUREG/CP-0112 (1990)Google Scholar
  17. 17.
    Morrow, J.D.: Cyclic Plastic Strain Energy and Fatigue of Metals. International Friction, Damping and Cyclic Plasticity, pp. 45–86. ASTM, PA (1965)Google Scholar
  18. 18.
    Morrow J.D.: Fatigue Design Handbook. SAE Advances in Engineering, vol. 4, pp. 21-29 (1968)Google Scholar
  19. 19.
    Manson, S.S., Halford, G.R.: Practical implementation of the double linear damage rule and damage curve approach for treating cumulative fatigue damage. Int. J. Fract. 17(2), 169–172 (1981). (R35–R42)CrossRefGoogle Scholar
  20. 20.
    Walcher, J., Gary, D., Manson, S.S.: Aspects of cumulative fatigue damage analysis of cold end rotating structures. AIAA 79–1190 (1979)Google Scholar
  21. 21.
    Smith, K.N., Watson, P., Topper, T.H.: A stress-strain function for the fatigue of metals. J. Mater. 5(4), 767–778 (1970)Google Scholar
  22. 22.
    Fash, J.W., Socie, D.F.: Fatigue behavior and mean effects in gray cast iron. Int. J. Fatigue 4(3), 137–142 (1982)CrossRefGoogle Scholar
  23. 23.
    Koh, S.K., Stephens, R.I.: Mean stress effects on low cycle fatigue for high strength steels. Fatigue Fract. Eng. Mater. Struct. 14(4), 413–428 (1991)CrossRefGoogle Scholar
  24. 24.
    Wener, T., Fatemi, A.: Effect of mean stress on fatigue behavior of hardened carbon steel. Int. J. Fatigue 13(3), 241–248 (1991)CrossRefGoogle Scholar
  25. 25.
    Forsetti, P., Blasarin, A.: Fatigue behavior of microalloyed steels for hot forged mechanical componentes. Int. J. Fatigue 10(3), 153–161 (1988)CrossRefGoogle Scholar
  26. 26.
    Mechanical Behavior of Materials. Dowling, Pearson Education (1998)Google Scholar
  27. 27.
    Stadnick, S.J., Morrow, J.: Technique for smooth specimen simulation of the fatigue behavior of notched members. ASTM-STP 515, 229–252 (1972)Google Scholar
  28. 28.
    Crews Jr, J.H.: Crack initiation at stress concentration as influenced by prior local plasticity. Achievement of high fatigue resistance in metals and alloys. ASTM-STP 467, 37 (1970)Google Scholar
  29. 29.
    Neuber, H.: Theory of notch stresses-principles for exact stress calculation. julius spring, Berlin (1937). Translated and published by J.W. Edwards, Publishers, Incorporated, Ann Arbor, Mi. (1946)Google Scholar
  30. 30.
    Neuber, H.: Theory of notch stresses: principles for exact calculation with reference to structural form and strength. 2nd Edn. Springer, Berlin (1958). Translated and issued as AEC-TR-4547 by the US Office of Technical Information (1961)Google Scholar
  31. 31.
    Wetzel, R.M.: Smooth specimen simulation of the fatigue behavior of notches. J. Mater. 3(3), 646–657 (1968)Google Scholar
  32. 32.
    Topper, T.H., Wetzel, R.M., Morrow, J.: Neuber rule applied to fatigue of notched specimens. J. Mater. 4(1), 200–209 (1969)Google Scholar
  33. 33.
    Lüdwick, P.Z.: Dauerbruch Versuche mit metallen. Ver. Dent. Ing. (1926)Google Scholar
  34. 34.
    Manjoine, M.J.: Multiaxial stress and fracture. Fracture, vol. 3, Eng. Fund. and Environm. Effects, , Academic, New York (1970)Google Scholar
  35. 35.
    Davis, E.A., Connelly, F.M.: Stress distribution and plastic deformation in rotating cylinders of strain-hardening materials. J. Appl. Mech. 26, 25–30 (1959)MATHGoogle Scholar
  36. 36.
    Milella, P.P.: Meccanica della Frattura Lineare Elastica ed Elastoplastica. Ansaldo Nucleare Editore (1999)Google Scholar
  37. 37.
    Milella, P.P., Bonora, N.: On the dependence of the weibull exponent on geometry and loading conditions and its implications on the fracture toughness probability curve using a local approach criterion. Int. J. Fract. 104, 71–87 (2000)CrossRefGoogle Scholar
  38. 38.
    Wilson, W.K.: Elastic-plastic analysis of blunt notched ct specimens and applications. J. Press. Vessel Technol. 96(4), 293–298 (1974)CrossRefGoogle Scholar
  39. 39.
    Huang, W.C.: Theoretical study of stress concentrations of circular holes and inclusion in strain hardening materials. Int. J. Solids. Struct. 8(2), 135–136 (1972)Google Scholar
  40. 40.
    Saanouni, K., Bathias, C.: Study of fatigue crack initiation in the vicinity of notches. Eng. Fract. Mech. 16(5), 695–706 (1982)CrossRefGoogle Scholar
  41. 41.
    Leis, B.N., Gowda, C.V.B., Topper, T.H.: Cyclic inelastic deformation and the fatigue notch factor. Cyclic stress–strain behavior—analysis, experimentation and failure prediction. Am. Soc. Test. Mater., ASTM STP 519, 133–159 (1973)Google Scholar
  42. 42.
    Walker, E.K.: Multiaxial stress–strain approximation for notch fatigue behavior. J. Test. Eval. 5(2), 106–113 (1977)CrossRefGoogle Scholar
  43. 43.
    Maiya, P.S.: Effects of notches on crack initiation in low cycle fatigue. Mater. Sci. Eng. 38, 289–294 (1979)CrossRefGoogle Scholar
  44. 44.
    Lowrence, F.V., Burk, J.V., Jung, J.Y.: Influence of residual stress on the predicted fatigue life of weldments. ASTM STP 776 Residual Stress in Fatigue, PA, pp. 33–43 (1982)Google Scholar
  45. 45.
    Reemsnayder, H.S.: Evaluating the Effects of Residual Stresses of Unnotched Fatigue Resistance. Society of Environmental Engineers, UK (1981)Google Scholar
  46. 46.
    Seeger, T., Heuler, P.: Generalized application of neber’s rule. J. Test. Eval. 8(4), 199–204 (1980)CrossRefGoogle Scholar
  47. 47.
    Hickerson, J.P., Hertzberg, R.W.: The role of mechanical properties in low-stress fatigue crack propagation. Metallurgical Transactions 3, 179 (1972)CrossRefGoogle Scholar
  48. 48.
    Masing, G.: Eigenspannungen und Verfestigung Brim Messing. In: Proceedings of 2nd Congress on Applied Mechanics, Zurich, pp. 332–335 (1926)Google Scholar

Copyright information

© Springer-Verlag Italia 2013

Authors and Affiliations

  1. 1.Department of Civil and Mechanical EngineeringUniversity of Cassino ItalyCassino (Rome)Italy

Personalised recommendations