Stress-Based Fatigue Analysis High Cycle Fatigue



So far, we have examined fatigue from a phenomenological point of view, describing the sequence of events that take place in metals from the early submicroscopic damage that precedes microcracks formation and eventually leads to the macrocrack generation. It has also been discussed what are those factors, other than stresses, that affect fatigue strength or life of metals and have something to do with their surface layer, so important in the fatigue process. We shall now address the issue of high cycle fatigue design looking at stresses that, for the moment, are considered elastic and of equal amplitude, though with possible mean value larger than zero.


Fatigue Life Fatigue Strength Ultimate Strength Fatigue Limit Stress Amplitude 


  1. 1.
    Lipson, C., Juvinall, R.C.: Handbook of Stress and Strength. The Macmillan Company, New York (1963)Google Scholar
  2. 2.
    Gough, H.J.: The Fatigue of Metals. Scott, Greenwood and Son, London (1924)Google Scholar
  3. 3.
    Cazaud, R.: Fatigue of Metals. Chapman and Hall, London (1953)Google Scholar
  4. 4.
    Evans, E.B., Ebert, J., Briggs, C.W.: Proceedings of American Society for Testing and Materials, vol. 56, p. 979 (1956)Google Scholar
  5. 5.
    Heywood, R.B.: Designing against Fatigue. Chapmann and Hall, London (1962)Google Scholar
  6. 6.
    Svensson, T., Maré, J., Wadman, B.: Determination of the Fatigue Limit, Methods and Problems. IM Report Sweedish Institute of Applied Mathematics,   (2000)Google Scholar
  7. 7.
    Murakami, Y., Endo, T.: Effect of Hardness on Crack Geometries on ΔKth of Small Cracks Emanating from Small Defects. The Behaviour of Short Fatigue Cracks. EGF Publ. 1. In: Miller, K.J., Los Rios E.R.D. (eds.) Mechanical Engineering Publications, London, pp. 275–293 (1986)Google Scholar
  8. 8.
    Garwood, M.F., Zurburg, H.H., Erickson, M.A.: Correlation of LaboratoryTests and Service Performance, Interpretation of Tests and Correlation with Service. ASM, pp. 1–77 (1951)Google Scholar
  9. 9.
    Juvinall, R.C.: Engineering Considerations of Stress, Strain and Strength, p. 214. McGraw-Hill, New York (1967)Google Scholar
  10. 10.
    Dowling, N.E.: Mechanical Behavior of Materials: Engineering Methods for Deformation. Fracture and Fatigue. Prentice Hall, Englewood Cliffs (1993)Google Scholar
  11. 11.
    Murakami, Y., Endo, T.: Effect of Defects, Inclusions and Inhomogeneities on Fatigue Strength. Int. J. Fatigue 16, 163–182 (1994)CrossRefGoogle Scholar
  12. 12.
    McGreevy, T.E.: The competing role of microstructure and flaw size on the fatigue limit of metals. Thesis, Mechanical Engineering, University of Illinois, Urbana-Champaign (1998)Google Scholar
  13. 13.
    Sylvestrowicz, W., Hall, E.O.: Proc. Phys. Soc. London B 64, 495, 742–747 (1951)Google Scholar
  14. 14.
    Petch, N.J.: Journal of Iron and Steel Institute 174, 25, Progress in Metal Physics 5, 1, Pergamon Press (1954)Google Scholar
  15. 15.
    Finney, J.M.: Department of supply, Australia, aero. Research lab. Struct. Mats. Report 287 (1962)Google Scholar
  16. 16.
    Ferro, A., Mazzetti, P., Montalenti, G.: On the effect of the crystalline structure on fatigue: comparison between BCC metals and FCC and hexagonal metals. Phil. Mag. 12, 867 (1965)Google Scholar
  17. 17.
    Gaugh, H.J., Wood, W.A.: Proc. Inst. Mech. Eng. 141, 175 (1939)Google Scholar
  18. 18.
    Grover, H.J., Bishop, S.N., Jackson, L.R.: NACA Tech Note 2390 (1951)Google Scholar
  19. 19.
    Lazan, B.J., Blatherwick, A.A.: Wright air development center. Technical report, pp. 52–307 (1952)Google Scholar
  20. 20.
    Howell, F.M., Miller, J.L.: Proc. ASTM 55, 955 (1955)Google Scholar
  21. 21.
    Low, A.C.: R. Aeronaut. Soc. 59, 629 (1955)Google Scholar
  22. 22.
    O’Conner, H.C., Morrison, J.L.: International Conference on Fatigue, Institution of Mechanical Engineers, p. 102 (1956)Google Scholar
  23. 23.
    Brock, G.W., Sinclair G.M.: Proc. ASTM 60 (1960)Google Scholar
  24. 24.
    Pomp, A., Hempel, M.: Wechselfestingkeiten und Kerbwinkungszahlen von Inlegierten und Legierten Stählen bei +20° C und −78° C. Arch. F. Eisen-Hüttenw, pp. 191–195 (1950)Google Scholar
  25. 25.
    Basquin, O.H.: Proc. ASTM 10, Part II, 625 (1910)Google Scholar
  26. 26.
    Bridgman, P.W.: The stress distribution at the neck of a tension specimen. Trans. Am. Soc. Met. 32, 553–574 (1944)Google Scholar
  27. 27.
    Bridgman, P.W.: Studies in large plastic flow and fracture. McGraw-Hill, New York (1952)MATHGoogle Scholar
  28. 28.
    Morrow, J.D.: Internal friction, damping and cyclic plasticity. ASTM STP-378, 45 (1965)Google Scholar
  29. 29.
    Haibach, E.: Betriebsfestigkeit (operational integrity). VDI-Verlag Stahleisen GmbH, Düsseldorf (1986)Google Scholar
  30. 30.
    Dixon, W.J., Mood, A.M.: A method for obtaining and analyzing sensitivity data. J. Am. Stat. Assoc. 43, 109–126 (1948)MATHCrossRefGoogle Scholar
  31. 31.
    Nakazawa, H., Kodama, S.: Statistical Research on Fatigue and Fracture. Elsevier Applied Science, New york (1987)Google Scholar
  32. 32.
    Wöhler, A.: Über die Festigkeits-Versuche mit Eisen und Sthal. Zeitschrift für Bauwesen XX, 73–106 (1870)Google Scholar
  33. 33.
    DuQuesnay, D.L., Topper, T.H., Yu, M.T., Pompetzki, M.A.: The effective stress range as a mean stress parameter. Int. J. Fatigue 14, 45–50 (1992)CrossRefGoogle Scholar
  34. 34.
    Gerber, W.Z.: Bayer. Archit. Ing., Vre. 6, 101 (1874)Google Scholar
  35. 35.
    Goodman, J.: Mechanics Applied to Engineering. Longman, London (1899)Google Scholar
  36. 36.
    Haigh, B.P.: Experiments on the fatigue of brasses. J. Inst. Met. 18, 55–86 (1917)Google Scholar
  37. 37.
    Soderberg, C.R.: Fatigue of the safety and working stress. Trans. Am. Soc. Mech. Eng. 52 (Part APM-52-2), 13–28 (1939)Google Scholar
  38. 38.
    Sines, G., Weisman, J.L. (eds.): Metal Fatigue. McGraw-Hill, New York (1959)Google Scholar
  39. 39.
    Forrest, P.G.: Fatigue of Metals. Pergamon Press, Oxford (1962)Google Scholar
  40. 40.
    Dolan, T.J.: Stress Range. In: Horger, O.J. (ed.) ASME Handbook: Metals Engineering-Design. McGraw-Hill, New York (1965)Google Scholar
  41. 41.
    Wilson, J.S., Haigh, B.P.: Stresses in Bridges, Engineering, pp. 446–448. London (1923)Google Scholar
  42. 42.
    Howell, F.M., Miller, J.L.: Proceedings of American society for testing and materials. ASTM 55, 955 (1955)Google Scholar
  43. 43.
    Forrest, P.G.: International Conference on Fatigue, Institution of Mechanical Engineers, p. 171 (1956)Google Scholar
  44. 44.
    Lazan, B.J., Blatherwick, A.A.: Wright air development center technical report 52–307 (1952); Report 53–181 (1953)Google Scholar
  45. 45.
    Schijve, J.: Fatigue of Structure and Materials. Kluwer Academic Publishers, p. 120. (2004)Google Scholar
  46. 46.
    Juvinall, R.C.: Engineering Considerations of Stress, Strain and Strength, p. 275. Mc Graw-Hill, Inc., New York (1967)Google Scholar
  47. 47.
    Morrow, J.: Fatigue Design Handbook. Advances in Engineering 4, SAE, Warrendale, PA, pp. 21–29 (1968)Google Scholar
  48. 48.
    Schütz, W.: View Point of Material Selection for Fatigue Loaded Structures (in German). Laboratoriun für Betriebsfestingkeit LBF, Darmstadt, Bericht Nr. TB-80 (1968)Google Scholar
  49. 49.
    Peterson, R.E., Wahl, A.M.: Two and three dimensional cases of stress concentration and comparison with fatigue tests. Trans. Am. Soc. Mech. Eng. 15–22 (1936)Google Scholar
  50. 50.
    MIL-HDBK-5D, Military Standardization Handbook, Metallic Materials and Elements for Aerospace Vehicle Structures, pp. 5–87 (1983)Google Scholar

Copyright information

© Springer-Verlag Italia 2013

Authors and Affiliations

  1. 1.Department of Civil and Mechanical EngineeringUniversity of Cassino, ItalyCassino (Rome)Italy

Personalised recommendations