Factors That Affect S-N Fatigue Curves

  • Pietro Paolo Milella


Standard S-N curves can be modified to account for all those factors that, like surface finish, load type, size etc., may have an effect on fatigue. However, the factors that will be treated in this chapter are not stress related, but are metallurgical and physical factors. All of them have something to do, either directly or indirectly, with the surface layer of the material.


Residual Stress Fatigue Life Fatigue Strength High Strength Steel Fatigue Limit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Thompson, N.: International conference on fatigue. Institution of Mechanical Engineers. 527 (1951)Google Scholar
  2. 2.
    Siebel, E., Gaier, M.: The influence of surface roughness on the fatigue strength of steels and non-ferrous alloys. Eng. Dig 18, 109–112 (1957). (Translation from VDI Zeitschrift 98(30), 1715–1723 (1956))Google Scholar
  3. 3.
    Thompson, N., Wadsworth, N.J.: Structural changes and energy dissipation during fatigue in copper. Br. J. Appl Phys. Suppl. 8, 51 (1957)CrossRefGoogle Scholar
  4. 4.
    Lutz, G.B., Wei, R.P.: US steel applied research laboratory TR project no. 40112-011 (1) (1961)Google Scholar
  5. 5.
    Raymond, M.H., Coffin, L.F.: Transactions of ASME. J. Basic Eng. 85, 548 (1963)CrossRefGoogle Scholar
  6. 6.
    Munse, W.H., Stallmeyer, J.E., Rone, J.W.: University of Illinois report (1965)Google Scholar
  7. 7.
    Neumann, P., Tonnessen, A.: Fatigue Crack Formation in Copper, pp. 41–47. Wiley, New York (1986)Google Scholar
  8. 8.
    Güngör, S., Edwards, L.: Effect of surface texture on fatigue life in a squize-cast 6082 aluminium alloy. Fatigue Fract. Eng. Mater. Struct. 16(4), 391–403 (1993)CrossRefGoogle Scholar
  9. 9.
    Juvinall, R.C.: Engineering Considerations of Stress, Strain and Strength, pp. 234–235. McGraw-Hill, New York (1967)Google Scholar
  10. 10.
    Johnson, R.C.: Specifying a surface finish that won’t fail in fatigue. Mach. Des. 45(11), 108 (1973)Google Scholar
  11. 11.
    Alden, T.H., Backofen, W.A.: Nucleation and growth of fatigue cracks in aluminum single crystals. Acta Metall. 9, 352 (1961)CrossRefGoogle Scholar
  12. 12.
    Fatigue Design Handbook. SAE Fatigue Design and Evaluation Technical Committee: SAE Inc. (1988)Google Scholar
  13. 13.
    Gladman, T., Holmes, B., McIvor, I.D.: Effect of Second-Phase Particles on the Mechanical Properties of Steels. Iron and Steel Institute, London (1971)Google Scholar
  14. 14.
    Jagannadham, K.: Debonding of circular second-phase particles. Eng. Fract. Mech. 9, 691 (1977)Google Scholar
  15. 15.
    Kung, C.Y., Fine, M.E.: Fatigue crack initiation and microcrack growth in 2024-T4 and 2124-T4 aluminum alloys. Metall. Trans. 10A, 603 (1979)Google Scholar
  16. 16.
    Gross, T.S.: Micromechanisms of Monotonic and Cyclic Crack Growth. ASM Handbook, Vol. 19, Fatigue and Fracture,electronic files (1998)Google Scholar
  17. 17.
    Duckworth, W.E., Ineson, E.: The effect of externally introduced alumina particles on the fatigue life of En24 steel. ISI. Spec. Rep. 77, 87–103 (1963)Google Scholar
  18. 18.
    Congleton, J., Wilks, T.P.: The air fatigue and corrosion fatigue of a 13 % Cr turbine blade steel. Fatigue Eng. mater. 11(2), 139–148 (1988)CrossRefGoogle Scholar
  19. 19.
    Eid, N.M.A., Thomason, P.F.: The nucleation of a fatigue crack in a low-alloy steel under high-cycle fatigue conditions and uniaxial loading. Acta Metall. 27, 1239 (1979)CrossRefGoogle Scholar
  20. 20.
    Murakami, Y., Miller, K.J.: What is fatigue damage? A view point from the observation of low cycle fatigue process. Int. J. Fatigue 27, 991–1005 (2005)MATHCrossRefGoogle Scholar
  21. 21.
    Natsume, Y., Muramatsu, T., Miyamoto, T.: Effect of carbide crack on fatigue strength of alloy-tool steel under cold working. In: Proceedings of JSME Meeting (900–86), 323–325 (1990)Google Scholar
  22. 22.
    Toryiama, T., Murakami, Y.: The √area parameter model for evaluation of effects of various artificial defects and mutual interaction of small defects at the fatigue limit. J. Soc. Mater. Sci. 42, 1160–1166 (1993)CrossRefGoogle Scholar
  23. 23.
    De Kazinczy, F.: Fatigue behavior of cast steel contaning defects. Jernkont. Annlr. 150, 493 (1966)Google Scholar
  24. 24.
    Frost, N.E., Greenan, A.F.: Cyclic stress required to propagate edge cracks in eight materials. J. Mech. Engng. Sci. 6:203–210 (1964)Google Scholar
  25. 25.
    Murakami, Y., Endo, M.: Effects of defects, inclusion and inhomogeneities on fatigue strength. Int. J. Fatigue 16(3), 163–182 (1994)CrossRefGoogle Scholar
  26. 26.
    Murakami, Y., Endo, M.: Quantitative evaluation of fatigue strength of metals containing various small defects or cracks. Eng. Fract. Mech. 17(1), 1–15 (1983)CrossRefGoogle Scholar
  27. 27.
    Murakami, Y., Endo, M.: Effect of Hardness and Crack Geometries on ΔKth of Small Cracks Emanating from Small Defects. The Behaviour of Short Fatigue Cracks, pp. 275–293. Mechanical Engineering Publications, London (1986)Google Scholar
  28. 28.
    Cummings, H.N., Stulen, F.B., Schulte, W.C.: Relation of inclusions to the fatigue properties of SAE 4340 steels. Trans. ASTM 49, 482 (1957)Google Scholar
  29. 29.
    Properties and Selection of Metals. Metals Handbook. 8th edn, Vol. 1, ASM, 224 (1975)Google Scholar
  30. 30.
    Petch, N.J.: The cleavage strength of polycrystals. J. Iron Steel Inst. 174, 25 (1953)Google Scholar
  31. 31.
    Jones, R.L., Conrad, H.: The minerals metals and materials society. TMS-AIME 245, 779 (1969)Google Scholar
  32. 32.
    Liaw, P.K., Yang, C.Y., Palusamy, S.S., Ren, W.: Fatigue Crack Initiation and Propagation Behaviour of Pressure Vessel Steels. Eng. Fract. Mech. 57(1), 90 (1997)Google Scholar
  33. 33.
    Frith, P.H.: International Conference on Fatigue, Institution of Mechanical Engineers, vol. 462 (1956)Google Scholar
  34. 34.
    Cummings, H.N., Stulen, F.B., Schulte, W.C.: Tentative fatigue strength reduction factors for silicate-type inclusions in high-strength steels. Proc. ASTM. 58, 505 (1958)Google Scholar
  35. 35.
    Duckworth, W.E.: Metallurgia. Brit. J. Met. 69, 53 (1964)Google Scholar
  36. 36.
    Atkinson, M.: The influence of nonmetallic inclusions on the fatigue properties of ultra-high tensile steels. J. Iron Steel Inst. 195, 64 (1960)Google Scholar
  37. 37.
    Properties and Selection of Metals: Metals Handbook, 8th edn, Vol. 1, ASM, 217 (1975)Google Scholar
  38. 38.
    Boyd, R.K.: Fatigue strength of an alloy steel: effect of tempering temperature and directional properties. Proc. Inst. Mech. Eng. 179, 733 (1965)Google Scholar
  39. 39.
    Love, R.J.: Motor Industry Research Association Report 9 (1950)Google Scholar
  40. 40.
    Evans, E.B., Ebert, J., Briggs, C.W.: Fatigue properties of cast and comparable wrought steels. Proc. ASTM. 56, 979 (1956)Google Scholar
  41. 41.
    Templin, R.L., Howell, F.M., Hartman, E.C.: The effect of grain direction on the fatigue properties of aluminum alloys. Prod. Eng. 21, 126 (1950)Google Scholar
  42. 42.
    Ranson, J.T., Mehl, R.F.: The statistical nature of the endurance limit. Proc. ASTM. 52, 779 (1952)Google Scholar
  43. 43.
    Frost, N.E., Marsh, K.J., Pook, L.P.: Metal Fatigue. Clarendon press, Oxford (1974). (81)Google Scholar
  44. 44.
    Findley, W.N., Mathur, P.N.: Modified theories of fatigue failures under combined stresses. ASTM 55, 924 (1955)Google Scholar
  45. 45.
    Chodorowski, W.T.: International Conference on Fatigue, Institution of Mechanical Engineers, 122 (1956)Google Scholar
  46. 46.
    Heywood, R.B.: Designing against Fatigue. Chapman and Hall, London (1962)Google Scholar
  47. 47.
    Aksoy, A.M.: Hot ductility of titanium aloys—A comparison with carbon steel. Trans. ASM. 49, 514 (1957)Google Scholar
  48. 48.
    Faupel, J.H., Fisher, F.E.: Engineering Design. Wiley, New York (1981)Google Scholar
  49. 49.
    Moore, H.F.: A study of size effect and notch sensitivity in fatigue test of steels. ASTM. Proc. 45, 507 (1945)Google Scholar
  50. 50.
    Shigley, J.E., Mitchell, L.D.: Mechanical Engineering Design. McGraw-Hill, New York (1983)Google Scholar
  51. 51.
    Buch, A.: Evaluation of size effects in fatigue tests on unnotched specimens and components (in German). Archivfür das Eisenhüttenwesen 43, 885–900 (1972)Google Scholar
  52. 52.
    Kloos, K.H., Buch, A., Zankov, D.: Pure geometrical size effect in fatigue tests with constant stress amplitude and in program tests. ZeitshriftWerkstoftechniek 12, 40–50 (1981)CrossRefGoogle Scholar
  53. 53.
    Ankab, K.M., Shulte, O.E., P.N.: Bidulia, IsvestiaVishihUtchebnikZavedenia-Tchornaia, Metallurghia 5, 168 (1966)Google Scholar
  54. 54.
    Forrest, P.G.: Fatigue of Metals. Pergamon Press, Oxford (1962)Google Scholar
  55. 55.
    Lyst, J.O.: The effect of residual strain upon the rotating beam fatigue properties of same aluminum alloys. Technical report 9-60-34, Alcoa, Pittsburgh (1960)Google Scholar
  56. 56.
    Fuchs, H.O., Stephens, R.I.: Metal Fatigue in Engineering. Wiley, New York (1980)Google Scholar
  57. 57.
    Almen, J.O., Black, P.H.: Residual Stresses and Fatigue in Metals. McGraw-Hill, New York (1963)Google Scholar
  58. 58.
    Kloos, K.H., Fuchsbauer, B., Adelmann, J.: Fatigue properties of specimens similar to components deep rolled under optimized conditions. Intr. J. Fatigue 9, 35–42 (1987)CrossRefGoogle Scholar
  59. 59.
    Prevéy, P.S., Jayaraman, N.: Comparison of mechanical compression by shot peening and low plasticity burnishing to mitigate SCC and corrosion-fatigue fail. ICSP 9, 247–252, Paris, Marne la Vallee, France, Sept 6–9 (2005)Google Scholar
  60. 60.
    Franz, H.E.: X-ray measurements of residual stresses after surface machining of Ti6Al4 V and Ti6Al6V2Sn (in German). VereinDeutscherIngenieure, Dusseldorf, VDI, Berichte 313, 453–462 (1978)Google Scholar
  61. 61.
    Nelson, D.V., Ricklefs, R.V., Evans, W.P.: The role of residual stresses in increasing long life fatigue strength of notched machine members. Achievements of High Fatigue Resistance in Metals and Alloys. ASTM STP 467, 228–253 (1970)Google Scholar
  62. 62.
    Fatigue Design Handbook, AE-10, Published by: Society of Automotive Engineers. 2nd Edn, vol 78 (1988)Google Scholar
  63. 63.
    Hayes, M.: Failure Analysis and Prevention. Fatigue of Springs. ASM Handbook, Vol. 19 (1997)Google Scholar
  64. 64.
    Almen, J.O., Black, P.H.: Residual Stresses and Fatigue in Metals. McGraw-Hill, New York (1963)Google Scholar
  65. 65.
    Fatigue Design Handbook, AE-10, Published by: Society of Automotive Engineers. 2nd Edn, vol 77 (1988)Google Scholar
  66. 66.
    Shimizu, T., Enomoto, K., Araki, S., Ikegami, T.: Induction Heating Stress Improvement for Welded Pipes and Its Effectiveness. EPRI Seminar on Countermeasures for BWR Pipe Cracking, Vol. O, Session 3, Jan 22–24 (1980)Google Scholar
  67. 67.
    Tanaka, S., Umemoto, T.: Residual Stress Improvement by Means of Induction Heating. Ibidem, Vol. O, Session 3, Jan 22–24 (1980)Google Scholar
  68. 68.
    Futami, T., Matsumoto, T., Iwasaki, S., Umemoto, T.: IHSI Implementation to Actual Plants. Ibidem, Vol. O, Session 7, Jan 22–24 (1980)Google Scholar
  69. 69.
    Chrenko, R.M.: Residual Stress Measurements on Type 304 Stainless Steel Weld Pipes. Ibidem, Vol. O, Session 4, Jan 22–24 (1980)Google Scholar
  70. 70.
    Cazaux, R., Persoz, L.: La Fatigue de Métaux. Dunod, Paris (1937)Google Scholar
  71. 71.
    Goto, M.: Statistical investigation of the behaviour of micro cracks in carbon steels. Fatigue Fract. Eng. Mater. Struct. 14(8), 835 (1991)Google Scholar
  72. 72.
    Van Wiggen, P.C., Rozendaal, H.C.F., Mittemeijer, E.J.: The nitriding behaviour of iron-chromium-carbon alloys. J. Mater. Sci. 20, 4561–4582 (1985)CrossRefGoogle Scholar
  73. 73.
    Costa, J.D., Ferreira, J.M., Ramalho, A.L.: Fatigue and fretting fatigue in ion-nitrided 34CrNiMo6 steel. Theoret. Appl. Fract. Mech. 35, 77 (2001)CrossRefGoogle Scholar
  74. 74.
    Osgood, C.C.: Fatigue Design. Pergamon Press, Oxford (1982)Google Scholar
  75. 75.
    Brock, G.W., Sinclair, G.M.: Elevated temperature tensile and fatigue behavior of unalloyed arc-cast molybdenum. Proc. ASTM. 60 (1960)Google Scholar
  76. 76.
    Cazaud, R.: Fatigue of Metals. Chapman and Hall, London (1953)Google Scholar
  77. 77.
    McCammon, R.D., Rosemberg, H.M.: The fatigue and ultimate tensile strengths of metals between 42 and 293 K. Proc. Roy. Soc. A 242, 203 (1957)Google Scholar
  78. 78.
    Allen, N.P., Forrest, P.G.: International Conference on Fatigue, Institution of Mechanical Engineers, p. 237 (1956)Google Scholar
  79. 79.
    Forrest, P.G.: Metal Fatigue. Chapman and Hall, London (1959)Google Scholar
  80. 80.
    Schwartzberg, F.R., Keys, R.D., Brown, M.J., Reightler, C.L.: Martin-Marietta Corp., Rep. NASA-CR, 63–29 (1963)Google Scholar
  81. 81.
    Betteridge, W.: The Nimonic Alloys. Edward Arnold, London (1959)Google Scholar
  82. 82.
    Hempel, M., Tillmann, H.E.: Wechselzugversuche bei Holen Temperaturen. Max-Plank Inst., Eisenforschun, 163 (1936)Google Scholar
  83. 83.
    Environmentally Assisted Cracking in Light-Water Reactors. NUREG/CR-4667, Vol. 22, Semiannual Report by O.K. Chopra et al. (1996)Google Scholar
  84. 84.
    Carreker, R.P. Jr.: Tensile deformation of silver as a function of temperature, strain rate, and grain size. Trans. AIME. 209, 112 (1957)Google Scholar
  85. 85.
    Structural Integrity of Water Reactor Pressure Boundary Components. US NRC, NUREG/CR-3228, Vol. 4, Annual Report by J.F. Loss (1985)Google Scholar

Copyright information

© Springer-Verlag Italia 2013

Authors and Affiliations

  1. 1.Department of Civil and Mechanical EngineeringUniversity of CassinoCassinoItaly

Personalised recommendations