Skip to main content

Factors That Affect S-N Fatigue Curves

  • Chapter
  • First Online:
Fatigue and Corrosion in Metals

Abstract

Standard S-N curves can be modified to account for all those factors that, like surface finish, load type, size etc., may have an effect on fatigue. However, the factors that will be treated in this chapter are not stress related, but are metallurgical and physical factors. All of them have something to do, either directly or indirectly, with the surface layer of the material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thompson, N.: International conference on fatigue. Institution of Mechanical Engineers. 527 (1951)

    Google Scholar 

  2. Siebel, E., Gaier, M.: The influence of surface roughness on the fatigue strength of steels and non-ferrous alloys. Eng. Dig 18, 109–112 (1957). (Translation from VDI Zeitschrift 98(30), 1715–1723 (1956))

    Google Scholar 

  3. Thompson, N., Wadsworth, N.J.: Structural changes and energy dissipation during fatigue in copper. Br. J. Appl Phys. Suppl. 8, 51 (1957)

    Article  Google Scholar 

  4. Lutz, G.B., Wei, R.P.: US steel applied research laboratory TR project no. 40112-011 (1) (1961)

    Google Scholar 

  5. Raymond, M.H., Coffin, L.F.: Transactions of ASME. J. Basic Eng. 85, 548 (1963)

    Article  Google Scholar 

  6. Munse, W.H., Stallmeyer, J.E., Rone, J.W.: University of Illinois report (1965)

    Google Scholar 

  7. Neumann, P., Tonnessen, A.: Fatigue Crack Formation in Copper, pp. 41–47. Wiley, New York (1986)

    Google Scholar 

  8. Güngör, S., Edwards, L.: Effect of surface texture on fatigue life in a squize-cast 6082 aluminium alloy. Fatigue Fract. Eng. Mater. Struct. 16(4), 391–403 (1993)

    Article  Google Scholar 

  9. Juvinall, R.C.: Engineering Considerations of Stress, Strain and Strength, pp. 234–235. McGraw-Hill, New York (1967)

    Google Scholar 

  10. Johnson, R.C.: Specifying a surface finish that won’t fail in fatigue. Mach. Des. 45(11), 108 (1973)

    Google Scholar 

  11. Alden, T.H., Backofen, W.A.: Nucleation and growth of fatigue cracks in aluminum single crystals. Acta Metall. 9, 352 (1961)

    Article  Google Scholar 

  12. Fatigue Design Handbook. SAE Fatigue Design and Evaluation Technical Committee: SAE Inc. (1988)

    Google Scholar 

  13. Gladman, T., Holmes, B., McIvor, I.D.: Effect of Second-Phase Particles on the Mechanical Properties of Steels. Iron and Steel Institute, London (1971)

    Google Scholar 

  14. Jagannadham, K.: Debonding of circular second-phase particles. Eng. Fract. Mech. 9, 691 (1977)

    Google Scholar 

  15. Kung, C.Y., Fine, M.E.: Fatigue crack initiation and microcrack growth in 2024-T4 and 2124-T4 aluminum alloys. Metall. Trans. 10A, 603 (1979)

    Google Scholar 

  16. Gross, T.S.: Micromechanisms of Monotonic and Cyclic Crack Growth. ASM Handbook, Vol. 19, Fatigue and Fracture,electronic files (1998)

    Google Scholar 

  17. Duckworth, W.E., Ineson, E.: The effect of externally introduced alumina particles on the fatigue life of En24 steel. ISI. Spec. Rep. 77, 87–103 (1963)

    Google Scholar 

  18. Congleton, J., Wilks, T.P.: The air fatigue and corrosion fatigue of a 13 % Cr turbine blade steel. Fatigue Eng. mater. 11(2), 139–148 (1988)

    Article  Google Scholar 

  19. Eid, N.M.A., Thomason, P.F.: The nucleation of a fatigue crack in a low-alloy steel under high-cycle fatigue conditions and uniaxial loading. Acta Metall. 27, 1239 (1979)

    Article  Google Scholar 

  20. Murakami, Y., Miller, K.J.: What is fatigue damage? A view point from the observation of low cycle fatigue process. Int. J. Fatigue 27, 991–1005 (2005)

    Article  MATH  Google Scholar 

  21. Natsume, Y., Muramatsu, T., Miyamoto, T.: Effect of carbide crack on fatigue strength of alloy-tool steel under cold working. In: Proceedings of JSME Meeting (900–86), 323–325 (1990)

    Google Scholar 

  22. Toryiama, T., Murakami, Y.: The √area parameter model for evaluation of effects of various artificial defects and mutual interaction of small defects at the fatigue limit. J. Soc. Mater. Sci. 42, 1160–1166 (1993)

    Article  Google Scholar 

  23. De Kazinczy, F.: Fatigue behavior of cast steel contaning defects. Jernkont. Annlr. 150, 493 (1966)

    Google Scholar 

  24. Frost, N.E., Greenan, A.F.: Cyclic stress required to propagate edge cracks in eight materials. J. Mech. Engng. Sci. 6:203–210 (1964)

    Google Scholar 

  25. Murakami, Y., Endo, M.: Effects of defects, inclusion and inhomogeneities on fatigue strength. Int. J. Fatigue 16(3), 163–182 (1994)

    Article  Google Scholar 

  26. Murakami, Y., Endo, M.: Quantitative evaluation of fatigue strength of metals containing various small defects or cracks. Eng. Fract. Mech. 17(1), 1–15 (1983)

    Article  Google Scholar 

  27. Murakami, Y., Endo, M.: Effect of Hardness and Crack Geometries on ΔKth of Small Cracks Emanating from Small Defects. The Behaviour of Short Fatigue Cracks, pp. 275–293. Mechanical Engineering Publications, London (1986)

    Google Scholar 

  28. Cummings, H.N., Stulen, F.B., Schulte, W.C.: Relation of inclusions to the fatigue properties of SAE 4340 steels. Trans. ASTM 49, 482 (1957)

    Google Scholar 

  29. Properties and Selection of Metals. Metals Handbook. 8th edn, Vol. 1, ASM, 224 (1975)

    Google Scholar 

  30. Petch, N.J.: The cleavage strength of polycrystals. J. Iron Steel Inst. 174, 25 (1953)

    Google Scholar 

  31. Jones, R.L., Conrad, H.: The minerals metals and materials society. TMS-AIME 245, 779 (1969)

    Google Scholar 

  32. Liaw, P.K., Yang, C.Y., Palusamy, S.S., Ren, W.: Fatigue Crack Initiation and Propagation Behaviour of Pressure Vessel Steels. Eng. Fract. Mech. 57(1), 90 (1997)

    Google Scholar 

  33. Frith, P.H.: International Conference on Fatigue, Institution of Mechanical Engineers, vol. 462 (1956)

    Google Scholar 

  34. Cummings, H.N., Stulen, F.B., Schulte, W.C.: Tentative fatigue strength reduction factors for silicate-type inclusions in high-strength steels. Proc. ASTM. 58, 505 (1958)

    Google Scholar 

  35. Duckworth, W.E.: Metallurgia. Brit. J. Met. 69, 53 (1964)

    Google Scholar 

  36. Atkinson, M.: The influence of nonmetallic inclusions on the fatigue properties of ultra-high tensile steels. J. Iron Steel Inst. 195, 64 (1960)

    Google Scholar 

  37. Properties and Selection of Metals: Metals Handbook, 8th edn, Vol. 1, ASM, 217 (1975)

    Google Scholar 

  38. Boyd, R.K.: Fatigue strength of an alloy steel: effect of tempering temperature and directional properties. Proc. Inst. Mech. Eng. 179, 733 (1965)

    Google Scholar 

  39. Love, R.J.: Motor Industry Research Association Report 9 (1950)

    Google Scholar 

  40. Evans, E.B., Ebert, J., Briggs, C.W.: Fatigue properties of cast and comparable wrought steels. Proc. ASTM. 56, 979 (1956)

    Google Scholar 

  41. Templin, R.L., Howell, F.M., Hartman, E.C.: The effect of grain direction on the fatigue properties of aluminum alloys. Prod. Eng. 21, 126 (1950)

    Google Scholar 

  42. Ranson, J.T., Mehl, R.F.: The statistical nature of the endurance limit. Proc. ASTM. 52, 779 (1952)

    Google Scholar 

  43. Frost, N.E., Marsh, K.J., Pook, L.P.: Metal Fatigue. Clarendon press, Oxford (1974). (81)

    Google Scholar 

  44. Findley, W.N., Mathur, P.N.: Modified theories of fatigue failures under combined stresses. ASTM 55, 924 (1955)

    Google Scholar 

  45. Chodorowski, W.T.: International Conference on Fatigue, Institution of Mechanical Engineers, 122 (1956)

    Google Scholar 

  46. Heywood, R.B.: Designing against Fatigue. Chapman and Hall, London (1962)

    Google Scholar 

  47. Aksoy, A.M.: Hot ductility of titanium aloys—A comparison with carbon steel. Trans. ASM. 49, 514 (1957)

    Google Scholar 

  48. Faupel, J.H., Fisher, F.E.: Engineering Design. Wiley, New York (1981)

    Google Scholar 

  49. Moore, H.F.: A study of size effect and notch sensitivity in fatigue test of steels. ASTM. Proc. 45, 507 (1945)

    Google Scholar 

  50. Shigley, J.E., Mitchell, L.D.: Mechanical Engineering Design. McGraw-Hill, New York (1983)

    Google Scholar 

  51. Buch, A.: Evaluation of size effects in fatigue tests on unnotched specimens and components (in German). Archivfür das Eisenhüttenwesen 43, 885–900 (1972)

    Google Scholar 

  52. Kloos, K.H., Buch, A., Zankov, D.: Pure geometrical size effect in fatigue tests with constant stress amplitude and in program tests. ZeitshriftWerkstoftechniek 12, 40–50 (1981)

    Article  Google Scholar 

  53. Ankab, K.M., Shulte, O.E., P.N.: Bidulia, IsvestiaVishihUtchebnikZavedenia-Tchornaia, Metallurghia 5, 168 (1966)

    Google Scholar 

  54. Forrest, P.G.: Fatigue of Metals. Pergamon Press, Oxford (1962)

    Google Scholar 

  55. Lyst, J.O.: The effect of residual strain upon the rotating beam fatigue properties of same aluminum alloys. Technical report 9-60-34, Alcoa, Pittsburgh (1960)

    Google Scholar 

  56. Fuchs, H.O., Stephens, R.I.: Metal Fatigue in Engineering. Wiley, New York (1980)

    Google Scholar 

  57. Almen, J.O., Black, P.H.: Residual Stresses and Fatigue in Metals. McGraw-Hill, New York (1963)

    Google Scholar 

  58. Kloos, K.H., Fuchsbauer, B., Adelmann, J.: Fatigue properties of specimens similar to components deep rolled under optimized conditions. Intr. J. Fatigue 9, 35–42 (1987)

    Article  Google Scholar 

  59. Prevéy, P.S., Jayaraman, N.: Comparison of mechanical compression by shot peening and low plasticity burnishing to mitigate SCC and corrosion-fatigue fail. ICSP 9, 247–252, Paris, Marne la Vallee, France, Sept 6–9 (2005)

    Google Scholar 

  60. Franz, H.E.: X-ray measurements of residual stresses after surface machining of Ti6Al4 V and Ti6Al6V2Sn (in German). VereinDeutscherIngenieure, Dusseldorf, VDI, Berichte 313, 453–462 (1978)

    Google Scholar 

  61. Nelson, D.V., Ricklefs, R.V., Evans, W.P.: The role of residual stresses in increasing long life fatigue strength of notched machine members. Achievements of High Fatigue Resistance in Metals and Alloys. ASTM STP 467, 228–253 (1970)

    Google Scholar 

  62. Fatigue Design Handbook, AE-10, Published by: Society of Automotive Engineers. 2nd Edn, vol 78 (1988)

    Google Scholar 

  63. Hayes, M.: Failure Analysis and Prevention. Fatigue of Springs. ASM Handbook, Vol. 19 (1997)

    Google Scholar 

  64. Almen, J.O., Black, P.H.: Residual Stresses and Fatigue in Metals. McGraw-Hill, New York (1963)

    Google Scholar 

  65. Fatigue Design Handbook, AE-10, Published by: Society of Automotive Engineers. 2nd Edn, vol 77 (1988)

    Google Scholar 

  66. Shimizu, T., Enomoto, K., Araki, S., Ikegami, T.: Induction Heating Stress Improvement for Welded Pipes and Its Effectiveness. EPRI Seminar on Countermeasures for BWR Pipe Cracking, Vol. O, Session 3, Jan 22–24 (1980)

    Google Scholar 

  67. Tanaka, S., Umemoto, T.: Residual Stress Improvement by Means of Induction Heating. Ibidem, Vol. O, Session 3, Jan 22–24 (1980)

    Google Scholar 

  68. Futami, T., Matsumoto, T., Iwasaki, S., Umemoto, T.: IHSI Implementation to Actual Plants. Ibidem, Vol. O, Session 7, Jan 22–24 (1980)

    Google Scholar 

  69. Chrenko, R.M.: Residual Stress Measurements on Type 304 Stainless Steel Weld Pipes. Ibidem, Vol. O, Session 4, Jan 22–24 (1980)

    Google Scholar 

  70. Cazaux, R., Persoz, L.: La Fatigue de Métaux. Dunod, Paris (1937)

    Google Scholar 

  71. Goto, M.: Statistical investigation of the behaviour of micro cracks in carbon steels. Fatigue Fract. Eng. Mater. Struct. 14(8), 835 (1991)

    Google Scholar 

  72. Van Wiggen, P.C., Rozendaal, H.C.F., Mittemeijer, E.J.: The nitriding behaviour of iron-chromium-carbon alloys. J. Mater. Sci. 20, 4561–4582 (1985)

    Article  Google Scholar 

  73. Costa, J.D., Ferreira, J.M., Ramalho, A.L.: Fatigue and fretting fatigue in ion-nitrided 34CrNiMo6 steel. Theoret. Appl. Fract. Mech. 35, 77 (2001)

    Article  Google Scholar 

  74. Osgood, C.C.: Fatigue Design. Pergamon Press, Oxford (1982)

    Google Scholar 

  75. Brock, G.W., Sinclair, G.M.: Elevated temperature tensile and fatigue behavior of unalloyed arc-cast molybdenum. Proc. ASTM. 60 (1960)

    Google Scholar 

  76. Cazaud, R.: Fatigue of Metals. Chapman and Hall, London (1953)

    Google Scholar 

  77. McCammon, R.D., Rosemberg, H.M.: The fatigue and ultimate tensile strengths of metals between 42 and 293 K. Proc. Roy. Soc. A 242, 203 (1957)

    Google Scholar 

  78. Allen, N.P., Forrest, P.G.: International Conference on Fatigue, Institution of Mechanical Engineers, p. 237 (1956)

    Google Scholar 

  79. Forrest, P.G.: Metal Fatigue. Chapman and Hall, London (1959)

    Google Scholar 

  80. Schwartzberg, F.R., Keys, R.D., Brown, M.J., Reightler, C.L.: Martin-Marietta Corp., Rep. NASA-CR, 63–29 (1963)

    Google Scholar 

  81. Betteridge, W.: The Nimonic Alloys. Edward Arnold, London (1959)

    Google Scholar 

  82. Hempel, M., Tillmann, H.E.: Wechselzugversuche bei Holen Temperaturen. Max-Plank Inst., Eisenforschun, 163 (1936)

    Google Scholar 

  83. Environmentally Assisted Cracking in Light-Water Reactors. NUREG/CR-4667, Vol. 22, Semiannual Report by O.K. Chopra et al. (1996)

    Google Scholar 

  84. Carreker, R.P. Jr.: Tensile deformation of silver as a function of temperature, strain rate, and grain size. Trans. AIME. 209, 112 (1957)

    Google Scholar 

  85. Structural Integrity of Water Reactor Pressure Boundary Components. US NRC, NUREG/CR-3228, Vol. 4, Annual Report by J.F. Loss (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pietro Paolo Milella .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Italia

About this chapter

Cite this chapter

Milella, P.P. (2013). Factors That Affect S-N Fatigue Curves. In: Fatigue and Corrosion in Metals. Springer, Milano. https://doi.org/10.1007/978-88-470-2336-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2336-9_3

  • Published:

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-2335-2

  • Online ISBN: 978-88-470-2336-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics