Morphological Aspects of Fatigue Crack Formation and Growth



A very important tool given to designer is the post mortem examination of service failed pieces. On the fracture surface it is written the complete story of its destiny. What is actually needed is the key to decode and interpreter the characteristic features that have been left on the fracture surfaces, some of which can be seen at naked eye while others need an optical or a scanning electron microscope. From the pioneer effort of Ewing and Humphrey already in 1903 fractography has become a mature science capable of providing complete information on fracture mode, stress, number of cycles etc. this chapter is aiming at providing some useful knowledge and an essential background for the study of fatigue from what can be seen or unveiled on the fracture surface.


Crack Growth Rate Slip Band Fatigue Failure Slip Line High Cycle Fatigue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Neumann, P.: Bildung und Ausbreitung von Rissen bei der Wechselverformung. Zaitschrift f. Metallkunde H 11, 780–789 (1967)Google Scholar
  2. 2.
    Forsyth, P.J.E.: International Conference on Fatigue. Inst. Mech. Eng. (1956)Google Scholar
  3. 3.
    Forsyth, P.J.E., Stubbington, C.A.:The Slip band extrusion effect observed in some aluminum alloys subjected to cyclic stress. Nature. vol. 175, p. 767 (1955)Google Scholar
  4. 4.
    Forsyth, P.J.E.: Some observations on the nature of fatigue damage. Phil. Mag. vol. 2, p. 437, (1957)Google Scholar
  5. 5.
    Forsyth, P.J.E.: Proceedings of Royal Society A242, 198 (1957)Google Scholar
  6. 6.
    Forsyth, P.J.E., Stubbington, C.A.: Slip band extension effect observed on copper. J Inst Metals. 86, 90 (1957–1958)Google Scholar
  7. 7.
    Klesnil, M., Lukáš, P.J.: Iron and Steel Institute. 203, 1043 (1965)Google Scholar
  8. 8.
    Cina, B.J.: Iron and Steel Institute. 194, 324 (1960)Google Scholar
  9. 9.
    Cottrell, A.H., Hull, D.: Extrusions and intrusions by cyclic slip in copper. Proc. Roy. Soc. A242, 211–213 (1957)Google Scholar
  10. 10.
    Kocanda, S.: Fatigue Failure of Metals. Sijthoff & Noordhoff Int Pubs, Alphena/d Rijd (1978)CrossRefGoogle Scholar
  11. 11.
    Mott, N.T.: A theory of the origin of fatigue cracks. Acta Metall. 6, 195–197 (1958)CrossRefGoogle Scholar
  12. 12.
    Boettner, R.C., McEvily, A.J., Liu, Y.C.: On the Formation of fatigue crack. Phil. Mag. 10, 95 (1964)Google Scholar
  13. 13.
    Yokobori, T., Kawasaki, T., Nakanishi, S., Kawaghishi, M.: Some experiments on heavy section specimen under low-cycle fatigue testing. Met. Sci. J. 5(1), 25–33 (1969)Google Scholar
  14. 14.
    McEvily, A.J., Johnston, T. L.: International Conference on Fracture, Sendai (1965)Google Scholar
  15. 15.
    Forsyth, P.J.E.: Fatigue damage and crack growth in aluminum alloys. Acta Metall. 11, 713 (1963)Google Scholar
  16. 16.
    Liaw, P.K., Saxena, A., Schaffer, J.: Creep crack growth behaviour of steam pipe steels: effects of inclusion content and primary creep. Eng. Fract. Mech. 57(1), 112 (1997)Google Scholar
  17. 17.
    Mills, W.J., James, L.A.: Effect of temperature on the fatigue crack propagation behaviour of inconel X-750. Fatigue Eng. Mater. struct. 3, 172 (1980)CrossRefGoogle Scholar
  18. 18.
    Metals Handbook: Failure Analysis and Prevention, vol. 10, 8th edn. ASM 102 (1975)Google Scholar
  19. 19.
    Rice, R.C., Rungta, R.: Fatigue analysis of a rail subjected to controlled service conditions. Fatigue Fract. Eng. Mater. Struct. 10(3), 213–221 (1987)CrossRefGoogle Scholar
  20. 20.
    Schijve, J.: Fatigue of Structures and Materials. Kluwer Academic Publisher, Dordrecht 36 (2004)Google Scholar
  21. 21.
    Metals Handbook: Fractography, vol. 12, 9th Edn. ASM, p. 483 (1987)Google Scholar
  22. 22.
    Metals Handbook: Failure Analysis and Prevention, vol. 10, 8th edn. ASM, p. 97 (1975)Google Scholar
  23. 23.
    Metals Handbook: Failure Analysis and Prevention, vol. 10, 8th edn. ASM, p. 100 (1975)Google Scholar
  24. 24.
    Metals Handbook: Failure Analysis and Prevention, vol. 10, 8th edn. ASM, p. 275 (1975)Google Scholar
  25. 25.
    Frost, N.E., Marsh, K.J., Pook, L.P.: Metal Fatigue. Clarendon, Oxford (1974)Google Scholar
  26. 26.
    Hutchings, F.R., Unterweiser, P.M. (Ed.): Fatigue failure of a diesel engine Crankshaft, from Failure Analysis the British Engine Technical Reports. ASM (1981)Google Scholar
  27. 27.
    Wulpi, D.J.: Understanding How Components Fail, 2nd ed., ASM (1986)Google Scholar
  28. 28.
    Thompson, N., Wadsworth, N.J.: Metal fatigue. Adv. Phys. 7(25), 72 (1958)CrossRefGoogle Scholar
  29. 29.
    Nine, H.D., Kuhlmann-Wilsdorf, D.: Fatigue in copper single crystals in a new model of fatigue in face-centered-cubic metals. Can. J. Phys. 45(2), 865 (1967)CrossRefGoogle Scholar
  30. 30.
    Schijve, J.: Fatigue of Structures and Materials. Kluwer Academic Publisher, Dordrecht 30 (2004). 30Google Scholar
  31. 31.
    Laird, C.: The influence of metallurgical structures on the mechanism of fatigue crack propagation. FORD Scientific Laboratory, Dearborn (1966)Google Scholar
  32. 32.
    Davidson, D.L., Lankford, J.: Fatigue crack growth in metals and alloys. Mechanisms and Micromechanics, International Materials Review. 37, 45–76 (1992)Google Scholar
  33. 33.
    Grinberg N.: stage II fatigue crack growth. Int. J. Fract. 3, 143 (1981)Google Scholar
  34. 34.
    Grinberg N.M.: stage II fatigue crack growth Int. J. Fract. 6, 143–148 (1984)Google Scholar
  35. 35.
    Beachem C.D.: Microscopic fracture processes in Fracture an Advanced Treatise In: Liebowitz H. (ed.). Trans ASM 60, 311 (1968)Google Scholar
  36. 36.
    Gross T.S.: Micro mechanisms of monotonic and cyclic crack growth. Metals Handbook, vol. 19, Fatigue and Fracture, ASM (1996)Google Scholar
  37. 37.
    Forsyth, P.J.E.: Fatigue damage and crack growth in aluminum alloys. Acta Metall. 11, 708 (1963)Google Scholar
  38. 38.
    Forsyth P.J.E., Stubbington G.A., Clark D.: Brittle Striations. J. Inst. Met. 90, 238–239 (1961)Google Scholar
  39. 39.
    Beachem, C.D., Pelloux, M.N.: Electron fractography: a tool for the study of micromechanisms of fracturing processes. 67th ASTM Symposium, STP-381, 236–237 (1964)Google Scholar
  40. 40.
    Beachem, C.D: Transactions AMS 60, 325 (1967)Google Scholar
  41. 41.
    Becker, W.: Closed-form modeling of the unloaded mode I dugdale crack. Eng. Fract. Mech. 57(4), 355–364 (1997)CrossRefGoogle Scholar
  42. 42.
    Nelson, H.G.: Hydrogen embrittlement. Treatise on materials science and technology, vol. 25, 331, Academic, New york (1983)Google Scholar
  43. 43.
    Forsyth, P.J.E., Ryder, D.A.: Some results of the examination of aluminum alloy specimen fracture surfaces. Acta Metall. 63, 117–124 (1961)Google Scholar
  44. 44.
    Pelloux, R.M., Faral, M., McGee, W.M.: Fractographic measurements of crack-tip closure. ASTM-STP 700, 35–48 (1980)Google Scholar
  45. 45.
    Srivatsan, T.S., Shiram, S., Daniels, C.: Influence of temperature on cyclic stress response and fracture behavior of aluminum alloy 6061. Eng. Fract. Mech. 56(4), 536 (1997)Google Scholar
  46. 46.
    Pelloux, R.M.N.: Corrosion fatigue crack propagation. II International Conference on Fracture, Brighton, Session V, Paper 64 (1969)Google Scholar
  47. 47.
    Pelloux, R.M.N.: Mechanisms of formation of striations. Trans. ASM 62, 281–284 (1969)Google Scholar
  48. 48.
    McClintoc, F.A., Pelloux, R.M.N.: Crack extension by alternating shear. Boeing Scientific Research Laboratories D-1 (1968)Google Scholar
  49. 49.
    Leger, J.: Fatigue life testing of crane drive shaft under crane-typical torsional and rotary bending loads. Schenck Hydropuls Mag. 1(89), 8–11 (1989)Google Scholar

Copyright information

© Springer-Verlag Italia 2013

Authors and Affiliations

  1. 1.Department of Civil and Mechanical EngineeringUniversity of Cassino, ItalyCassinoItaly

Personalised recommendations