Advertisement

Corrosion Fatigue

  • Pietro Paolo Milella
Chapter

Abstract

It is rather difficult to establish a simple yet comprehensive picture of the combined effects of fatigue and corrosion. First of all it must be clear which one is happening first and which one is following. This can be done by checking the relative stress intensity factor thresholds. But even when fatigue and corrosion start as individual events they can combine feeding each other.

Keywords

Crack Growth Rate High Strength Steel Stress Corrosion Crack Hydrogen Embrittlement Corrosion Fatigue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Wadsworth, N.J., Hutchings, J.: Internal stresses and fatigue in metals. Phil. Mag. 3, 1154 (1958)Google Scholar
  2. 2.
    Shives, T.R., Bennet, J.A.: The effect of environment on the fatigue strength of four selected alloys. NASA Report CR-267, 2–22 (1965)Google Scholar
  3. 3.
    Bennet, J.A.: Effect of reaction with the atmosphere during fatigue in metals. In: Fatigue—An Interdisciplinary Approach, p. 209. Siracuse University Press (1964)Google Scholar
  4. 4.
    Wadsworth, N.J.: The influence of atmospheric corrosion on the fatigue limit of iron 0.5 % carbon. Phil. Mag. 6, 397 (1961)Google Scholar
  5. 5.
    Goodacre, R.: Internal stresses and fatigue in metals. Engineering 139, 457 (1935)Google Scholar
  6. 6.
    Frost, N.E.: The growth of fatigue cracks. Appl. Mater. Res. 3, 131 (1964)Google Scholar
  7. 7.
    Amzallag, C., Rabbe, P., Bathias, C., Benoit, D., Trushon, M.: Influence of various parameters on the determination of the fatigue crack arrest threshold. ASTM STP 738, 29–44 (1981)Google Scholar
  8. 8.
    Sarrazin-Baudoux, C., Lesterlin, S., Petit, J.: Atmospheric influence on fatigue crack propagation in titanium alloys at elevated temperature. ASTM STP 1297, 117–130 (1997)Google Scholar
  9. 9.
    Achilles, R.D., Bulloch, J.H.: The Influence of Frequency, Waveform and Environment on the fatigue crack growth behaviour of SA 508 RPV steel. In: Proceedings of the Second IAEA Specialists’ Meeting on Subcritical Crack Growth, NUREG/CP 0067 1, pp. 379–422 (1986)Google Scholar
  10. 10.
    Imohf, E.J., Barsom, J.M.: Fatigue and corrosion-fatigue crack growth of 4340 steel at various yield strengths. Progress in flaw growth and fracture toughness testing. ASTM STP 536, 182–205 (1973)Google Scholar
  11. 11.
    Sprowls, D.O.: Evaluation of corrosion fatigue. ASM Metals Handbook, Corrosion 13, 245–282 (1992)Google Scholar
  12. 12.
    Barsom, J.M., Sovak, J.F., Imohf, E.: Corrosion fatigue crack propagation below KISCC in four high-yield strength steels. Laboratory Report 89.021-024(3), U.S. Steel Co. (1970)Google Scholar
  13. 13.
    Crooker, T.W., Lange, E.A.: Corrosion fatigue crack propagation for some new high strength structural steels. J. Basic Eng. Trans. ASME 91, 570–574 (1969)Google Scholar
  14. 14.
    Kondo, T., et al.: Fatigue crack propagation behavior of ASTM A 533 GrB Cl1 plate in an environment of high temperature primary grade nuclear reactor water. In: HSST 6th Annual Information Meeting, Paper 6 (1972)Google Scholar
  15. 15.
    Barsom, J.M., Rolfe, S.T.: Fracture and Fatigue Control in Structures. Application of Fracture Mechanics, p. 320. Prentice-Hall, Inc., New Jersey (1977)Google Scholar
  16. 16.
    Pao, P.S., Wei, W., Wei, R.P.: Environment-Sensitive Fracture of Engineering Materials, TMS-Time, p. 565 (1979)Google Scholar
  17. 17.
    Mager, T.R., Landes, J.D., McLoughlin, V., Moon, D.M.: The effect of low frequencies on the fatigue crack growth characteristic of A533 grade B class I plate in an environment of high-temperature primary grade nuclear reactor water. Oak Ridge, HSST Report 35 (1973)Google Scholar
  18. 18.
    Dawson, D.B., Pelloux, R.M.: Corrosion fatigue crack growth of titanium alloys in aqueous environments. Metall. Trans. A 5A, 723–731 (1974)Google Scholar
  19. 19.
    Iida, K., Kobayashi, H., Higuchi, M.: Predictive method of low cycle fatigue life of carbon and low alloy steels in high temperature water environments. In: Proceedings of the Second IAEA Specialists’ Meeting on Subcritical Crack Growth, NUREG/CP 0067 2, pp. 385–409 (1986)Google Scholar
  20. 20.
    Van Der Sluys, W.A., Emanuelson, R.: Overview of data trends in cyclic crack growth Results in LWR environments. In: Proceedings of the Second IAEA Specialists’ Meeting on Subcritical Crack Growth, NUREG/CP 0067 1, pp. 199–218 (1986)Google Scholar
  21. 21.
    Cullen, W.H.: Fatigue crack growth rates in pressure vessel and piping steels in LWR environment. USNRC Report NUREG/CR-4724 (1987)Google Scholar
  22. 22.
    Chiou, S., Wei, R.P.: Corrosion-fatigue cracking response of beta annealed Ti-6Al-4V Alloy in 3.5 % NaCl solution. NADC-83126-60, U.S. Naval Air Development Center (1984)Google Scholar
  23. 23.
    Bucci, R.J.: Environment enhanced fatigue and stress corrosion cracking of a titanium alloy plus a simple model for the assessment of environmental influence on fatigue behavior. PhD Dissertation, Lehigh University, Bethlehem (1970)Google Scholar
  24. 24.
    Banford, W.H., Moon, D.M., Ceschini, L.J.: Crack growth rate testing in reactor pressure vessel steels. In: Proceedings Fifth Water Reactor Safety Information Meeting, Gaithersburg MD, November (1977)Google Scholar
  25. 25.
    Amzallag, C., Bernard, J.L., Slama, G.: Effect of loading and metallurgical parameters on the fatigue crack growth rates of pressure vessels steels in PWR environment. In: International Symposium in Environmental Degradation of Materials in Nuclear Power—Power Reactors, Myrtle Beach, South Carolina, pp. 15–17, 22–25 Aug 1983Google Scholar
  26. 26.
    Atkinson, J.D., Bulloch, J.: The effect of bulk sulfur content on da/dN. Minutes of IGCGR Meeting, Akron OH (1984)Google Scholar
  27. 27.
    Banford, W.H., Jacko, R.J., Wilson, I.L.W., Ceschini, L.J.: The effect of material and environmental variables on corrosion fatigue crack growth in pressure vessel steels. NRC NUREG/CP-0058 4 (1984)Google Scholar
  28. 28.
    Kondo, T., Kuniya, J., Takaku, H., Arii, M., Kurihara, M.: Recent study on cyclic crack growth of reactor pressure boundary materials in high temperature water environment in Japan. In: Proceedings of the Second IAEA Specialists’ Meeting on Subcritical Crack Growth, NUREG/CP 0067 1, pp. 219–249 (1986)Google Scholar
  29. 29.
    ASME XI, Appendix A, American Society of Mechanical Engineers (1986)Google Scholar
  30. 30.
    Tice, D.R., Atkinson, J.D., Scott, P.M.: Proceedings of the 2nd IAEA Specialist’s Meeting on Subcritical Crack Growth, Sendai, Japan, US NRC NUREG/CP 0067 1, pp. 251–282 (1986)Google Scholar
  31. 31.
    Scott, P.M., Truswell, A.R.: Proceedings of the IAEA Specialists’ Meeting on Subcritical Crack Growth, Freiburg, Germany, US NRC NUREG/CP 0044 1, p. 376 (1981)Google Scholar
  32. 32.
    Atkinson, J.D., Bulloch, J.H., Forrest, J.E.: A fractographic study of fatigue cracks produced in A533B pressure vessel steel exposed to simulated PWR primary water environment. In: Proceedings of the 2nd IAEA Specialist’s Meeting on Subcritical Crack Growth, Sendai, Japan, US NRC NUREG/CP 0067 1, p. 290 (1986)Google Scholar
  33. 33.
    Torronen, K., Hänninen, H., Cullen, W.H. Jr.: Mechanisms of environmental assisted cyclic crack growth of nuclear reactor pressure vessel steels. In: Proceedings of the IAEA Specialists’ Meeting on Subcritical Crack Growth, NUREG/CP 0044 2, p. 42, Freiburg (1981)Google Scholar
  34. 34.
    Amzallag, C., Bernard, G.L., Slama, G.: French studies of cyclic crack growth behaviour of RPV steels in PWR environment. In: Proceedings of the 2nd IAEA Specialists’ Meeting on Subcritical Crack Growth, NUREG/CP 0067 1, p. 305 (1985)Google Scholar
  35. 35.
    Torronen, K., Kemppainen, M., Hanninen, H.: Fractographic evaluation of specimens of A 533 B pressure vessel steels. Final Report of EPRI, Contract RP 1325-7, Report NP 3483 (1984)Google Scholar
  36. 36.
    Fontana, M.G.: Corrosion Engineering. McGraw-Hill, New York (1986)Google Scholar
  37. 37.
    Austen, I.M., Walker, E.F., May, M.J.: Factors affecting the rate of growth of cracks by corrosion-fatigue. Technical Report STF-6210/KE/18/802 (1976)Google Scholar
  38. 38.
    Speidel, M.O., Blackburn, M.J., Beck, T.R., Feeney, J.A.: Corrosion fatigue and stress corrosion crack growth in high strength aluminum alloys, magnesium alloys and titanium alloys exposed to aqueous solutions. In: Corrosion Fatigue, International Corrosion Conference Series NACE-2 (1972)Google Scholar
  39. 39.
    Gallagher, J.P., Sinclair, G.M.: Environmentally assisted fatigue crack growth rates in SAE 4340 steel. J. Basic Eng. Trans. ASME 21, 508 (1969)Google Scholar
  40. 40.
    Barsom, J.M.: Corrosion fatigue crack propagation below KISCC. Eng. Fract. Mech. 3(1), 15–18 (1971)CrossRefGoogle Scholar
  41. 41.
    Vosikovsky, O.: Fatigue-crack growth in an X-65 line-pipe steel at low cyclic frequencies in aqueous environments. Trans. ASME Series H 97, 298–305 (1975)Google Scholar
  42. 42.
    Wei, R.P., Landes, J.D.: Correlation between sustained load and fatigue crack growth in high strength steels. Mat. Res. Stand. ASTM 9, 25 (1969)Google Scholar
  43. 43.
    Austen, I.M., Walker, E.F., May, M.J.: Factors affecting the rate of growth of cracks by corrosion-fatigue. British Steel, Ref. 6210, Ke 18/802 (1978)Google Scholar
  44. 44.
    Walker, E.F., May, M.J., Irvine, K.J.: Mechanisms and control of crack growth in steels. Technical Report STF/85/76, 6210/KE/8/802 and STF/771, 6210/KE/8/802 (1976)Google Scholar
  45. 45.
    Van Der Sluys, W.A., Emanuelson, R.: Cyclic crack growth of reactor pressure vessel steels in light water reactor environment. Eng. Mater. Technol. The Institution of Mech. Eng. 4, 1–10, London (1985)Google Scholar

Copyright information

© Springer-Verlag Italia 2013

Authors and Affiliations

  1. 1.Department of Civil and Mechanical EngineeringUniversity of Cassino, ItalyCassino (Rome)Italy

Personalised recommendations