Advertisement

Fracture Mechanics Approach to Stress Corrosion

  • Pietro Paolo Milella
Chapter

Abstract

Even dough stress corrosion is an electrochemical process it can be analyzed by an advanced mechanical tool like the Irwin stress intensity factor. This actually makes a many-sided and complex phenomenon be treated with a single parameter theory. The fundamental result is that there is a threshold value below which corrosion cannot occur and once occurred it propagates with a rate that is independent of the applied stress intensity factor.

Keywords

Stress Intensity Factor Austenitic Stainless Steel High Strength Steel Hydrogen Sulfide Stress Corrosion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Steigerwald, E.A.: Delayed failure of high-strength steel in liquid environment. Proc. ASTM 60, 750–760 (1960)Google Scholar
  2. 2.
    Laycock, N.J., Newmann, R.C.: Localised dissolution kinetics, salt films and pitting potentials. Corros. Sci. 39, 1771 (1997)CrossRefGoogle Scholar
  3. 3.
    Compton, K.G., Mendizza, A., Bradley, W.W.: Atmospheric galvanic couple corrosion. Corrosion II, 383 (1955)Google Scholar
  4. 4.
    Chen, G.S., Liao, C.M., Wan, K.C., Gao, M., Wei, R.P.: Pitting corrosion and fatigue crack nucleation. Am. Soc. Test. Mater. ASTM STP 1298, 18–33 (1997)Google Scholar
  5. 5.
    Weiderhorn, S.: Moisture assisted crack growth in ceramics. Inten. Jour. Fract. Mech. 4(2), 171 (1968)Google Scholar
  6. 6.
    Novak, S.R., Rolfe, S.T.: Comparison of fracture mechanics and nominal stress analysis in stress corrosion cracking. Corrosion 26(4), 121–130 (1970)Google Scholar
  7. 7.
    Carter, C.S.: The effect of silicon on stress corrosion resistance of low-alloy high-strength steels. Corrosion 25, 423–431 (1969)Google Scholar
  8. 8.
    Smith, H.R., Piper, D.E., Downey, F.K.: A study of stress corrosion cracking by wedge-force loading. Eng. Fract. Mech. 1, 123–128 (1968)CrossRefGoogle Scholar
  9. 9.
    Johnson, H.H., Willner, A.M.: Moisture and stable crack growth in high strength steels. Appl. Mater. Res. 4, 34 (1965)Google Scholar
  10. 10.
    Steigerwald, E.A., Benjamin, W.D.: Stress corrosion cracking mechanisms in martensitic high strength steels. 3rd quarter progress report, contr. Air force materials laboratory AF 33(615), 3651 (1967)Google Scholar
  11. 11.
    Peterson, M.H., Brown, B.F., Newbegin, R.L., Groover, R.E.: Stress corrosion cracking of high strength steels and titanium alloys in chloride solution at ambient temperature. Corrosion 23, 142 (1967)Google Scholar
  12. 12.
    Landes, J.D.: Stress Corrosion Crack Growth. Lecture on the Use of Fracture Mechanics at Westinghouse, Pittsburgh (1974)Google Scholar
  13. 13.
    Wei, R.P., Novak, S.R., Williams, D.P.: Some important considerations in the development of stress corrosion cracking test methods. In: AGARD Conference Proceedings vol. 98, pp. 5–1 (1972)Google Scholar
  14. 14.
    Che-yu Li P., Talda M., Wei R.P.: The effect of environment on fatigue crack propagation in ultra-high strength steel. Int. J. Fract. Mech. 3, 29 (1967)Google Scholar
  15. 15.
    Landes, J.D., Wei, R.P.: The kinetics of subcritical crack groth and deformation in a high strength steel. J. Eng. Mater. Technol., ASME Ser. H 1, 2–9 (1973)CrossRefGoogle Scholar
  16. 16.
    Johnson, H.H., Paris, P.C.: Sub-critical flaw growth. Eng. Fract. Mech. 1, 3–45 (1968)CrossRefGoogle Scholar
  17. 17.
    ASTM G 39, Metal Corrosion, Erosion, and Wear Standards, Annual Book of ASTM, American Society for Testing and Materials 3(2), Section 3Google Scholar
  18. 18.
    McIntyre, P.: The relationship between stress corrosion cracking and sub critical flaw growth in hydrogen and hydrogen sulphide gases. In: Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys, National Association of Corrosion Engineers, p. 788 (1977)Google Scholar
  19. 19.
    Clark, W.G. Jr., Landes J.D.: The Effect of Hydrogen Gas Environment on the Crack Initiation, Growth and Fracture Properties of 180 ksi Yield Strength Type 4340 Steel. Westinghouse Research Report 73-7E7-ETIWA-R1 (1973)Google Scholar
  20. 20.
    Clark, W.G. Jr.: An Evaluation of the Crack Growth and Fracture Properties of 18Mn-5Cr Steel in Generator Environment. Westinghouse Research Report 73-1E7-MAGRR-R1 (1973)Google Scholar
  21. 21.
    Nelson, H.G., Williams, D.P.: Quantitative observations of hydrogen induced slow crack growth in a low alloy steel. In: Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys, National Association of Corrosion Engineers, p. 390 (1977)Google Scholar
  22. 22.
    Kwon, H.S., Cho, E.A., Yeom, K.A.: Predeiction of stress corrosion cracking susceptibility of stainless steels based on repassivation kinetics. Corrosion, NACE Int. 56(1), 40 (2000)Google Scholar
  23. 23.
    Kim, C.D., Wilde, B.E.: A review of constant strain-rate stress corrosion cracking test. In: Ugianski, G.M., Payer, J.H. (ed.): Stress Corrosion Cracking—The Slow Strain Rate Technique. American Society for Testing and Materials ASTM STP vol. 665, pp. 97–112 (1979)Google Scholar
  24. 24.
    Kwon, H.S., Cho, E.A., Yeom, K.A.: Prediction of stress corrosion cracking susceptibility of stainless steels based on repassivation kinetics. Corrosion 56(1), 37 (2000)CrossRefGoogle Scholar
  25. 25.
    Searles, J.L., Gouma, P.I., Buchheit, R.G.: Stress corrosion cracking of sensitized AA5083. Metall. Mater. Trans. A 32A, 2865 (2001)Google Scholar
  26. 26.
    Graville, B.A., Baker, R.G., Watkinson, F.: Effect of temperature and strain rate on hydrogen embrittlement of steels. British Weld J. 14, 337 (1967)Google Scholar
  27. 27.
    Moody, N.R., Robinson, S.L., Garrison Jr, W.M.: Hydrogen effects on the properties and fracture modes of iron-based alloys. Res. Mech. 30, 143–206 (1990)Google Scholar
  28. 28.
    Chornet, E., Coughlin, R.: Chemisorption of hydrogen in iron. J. Catal. 27, 246–265 (1972)CrossRefGoogle Scholar
  29. 29.
    Gangloff, R.P., Wei, R.P.: Gaseous hydrogen embrittlement of high strength steels. Met. Trans. 8, 1043–1053 (1977)CrossRefGoogle Scholar
  30. 30.
    Gangloff, R.P., Wei, R.P.: Fractographic analysis of gaseous hydrogen induced cracking in 18ni maraging steel. In: Fractography in Failure Analysis. ASTM STP, ASTM International, West Conshohocken, vol. 645 pp. 87–106 (1978)Google Scholar
  31. 31.
    Procter, R.P.M., Paxton, H.W.: Hydrogen Embrittlement of Stainless Steel and carbon steel. Trans. ASM 62, 989 (1969)Google Scholar

Copyright information

© Springer-Verlag Italia 2013

Authors and Affiliations

  1. 1.Department of Civil and Mechanical EngineeringUniversity of Cassino, ItalyCassino (Rome)Italy

Personalised recommendations