Hydrogen Embrittlement and Sensitization Cracking

  • Pietro Paolo Milella


Even dough sensitization and hydrogen embrittlement failures can be classified as stress corrosion cracking, they are so distinctive and important a form of corrosion that deserve to be treated in a section of their own. Therefore, this chapter will address just these two most devastating corrosive events that can jeopardize the integrity of metal structures: hydrogen embrittlement or cracking and stress corrosion of sensitized materials.


Austenitic Stainless Steel Hydrogen Absorption High Strength Steel Stress Corrosion Hydrogen Embrittlement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Stickler, R., Vinckier, A.: Morphology of grain-boundary carbides and its influence on intergranular corrosion of 304 stainless steel. Trans. ASM. LIV, 362–380 (1961)Google Scholar
  2. 2.
    ASTM G-59: Standard method for conducting potentio-dynamic polarization resistance measurements (1997)Google Scholar
  3. 3.
    Strauss, B., Schottky, H., Innueber, J.: Die Carbidausseheidung beim Gluehen von Nichtrostenden, Unmagnetischen Cr-Ni Stahl. Z. Anorg. Allg. Chem. 188, 309–324 (1930)CrossRefGoogle Scholar
  4. 4.
    Chevenard, P., Portevin, A.: Etude Expérimentale de l’Héterogénéité de Métaux et Alliages. Rev. Mét. 33, 96–113 (1936)Google Scholar
  5. 5.
    Conserva, M., Leoni, M.: Met. Trans. A. Physical Metallurgy and Material Science, p. 189 (1975)Google Scholar
  6. 6.
    Osozawa, K., Hengell, H.J.: The anodic polarization curves of iron-nickel-chromium alloys. Corros. Sci. 6, 389 (1966) Google Scholar
  7. 7.
    Keddam, M., Mattos, O.R., Takenouti, H.: Methods of anode dissolution of iron-chromium alloys investigated by electrode impedances. Electrochim Acta 31, 1147 (1986)Google Scholar
  8. 8.
    Dobbelaar, J.A.L., Herman, E.C.M., De Wit, J.H.W.: Pitting corrosion of metals. Corros. Sci. 33, 765 (1992)Google Scholar
  9. 9.
    Szclarska-Smialovska, Z.: Pitting and Crevice Corrosion. NACE Press, Huston (2005)Google Scholar
  10. 10.
    Davidson, R.M., DeBold, T., Johnson, M.J.: Metals Handbook, ASM International, 13, 551 (1987)Google Scholar
  11. 11.
    Soppet, W.K., Kassner, T.F.: Evaluation of environmental corrective actions. In: Environmentally assisted cracking light water reactors, NUREG/CR-4287, ANL-85-33, Annual Report (1985)Google Scholar
  12. 12.
    Staehle, R.W.: Bases for predicting the earliest penetrations due to SCC for the alloy 600 on the secondary side of steam generators. US NRC NUREG/CR-6737, p. 15 (2001)Google Scholar
  13. 13.
    Chaung, H.E., Lumsden, J.B.: Grain boundary segregation in nickel. EPRI Report FCC 7704, 9 (1977)Google Scholar
  14. 14.
    Unocic, K.A.: Structure-composition-property relationships in 5XXX series aluminum alloys. Dissertation for the degree of philosophy doctor, Graduate School of the Ohio State University, material science and engineering graduate program (2008)Google Scholar
  15. 15.
    Dillamore, I.L., Roberts, W.T., Wilson, D.V.: The Mechanical Properties of Stainless Steel with Particular Reference to Crystallographic Anisotropy, vol. 117, pp. 37–49. Iron and Steel Institute (1969)Google Scholar
  16. 16.
    Griffiths, A.J., Wright, J.C.: Mechanical Properties of Austenite and Metastable Stainless Steel Sheet and Their Relationship with Press Forming Behaviour, vol. 117, pp. 37–49. Iron and Steel Institute (1969)Google Scholar
  17. 17.
    Tedmon, C.S., Vermilyea, D.A., Jr., Broeker, D.E.: Technical note-effect of cold work on intergranular corrosion of sensitized stainless steel. Corrosion 27, NACE (1971)Google Scholar
  18. 18.
    Indig, M.E., Vermilyea, D.A.: Corrosion of sensitized stainless steel in hot aqueous solution under natural and electrochemical control. Corrosion 31, NACE (1975)Google Scholar
  19. 19.
    Vermilyea, D.A., Indig, M.E.: Corrosion and electrochemical studies in aqueous solution at 289 °C. In: Proceedings of 5th International Congress on Metallic Corrosion, NACE, Tokyo, Japan (1972)Google Scholar
  20. 20.
    Clarke, W.L.: Studies on AISI type 304 stainless steel piping weldments for use in BWR application. EPRI NP-944, Final Report, pp. 3–60 (1978)Google Scholar
  21. 21.
    Lai, G.Y.: High Temperature Corrosion of Engineering Alloys. ASM International (1990)Google Scholar
  22. 22.
    Jewett, C.W.: The Growth and stability of stress corrosion cracks in large-diameter BWR piping. EPRI NP-2472 2, Final Report, p. G-25 (1982)Google Scholar
  23. 23.
    Caine, T.A., Bensch, M.M.: Role of the loading mode on crack growth rates in sensitized 304 stainless steel. In: The growth and stability of stress corrosion cracks in large diameter piping. vol. 2: Appendixes, EPRI NP-2472 2, Final Report, p. H-86 (1982)Google Scholar
  24. 24.
    Cox, A.F., Pollok, W.J.: Investigation of the cracking in HS748 propeller blade retaining bolts. ARL File BM2/03/17, Material div., Ref. M89/83/AFC/WJP, DSTO, Melbourne (1984)Google Scholar
  25. 25.
    Troiano, A.R.: Delayed failure of high strength steel. Corrosion 15, 207t–212t (1959)Google Scholar
  26. 26.
    Dautovic, P.D., Floreen, S.: Stress corrosion cracking and hydrogen embrittlement of iron alloys. Metall. Trans. 4, 2627–2630 (1973)Google Scholar
  27. 27.
    Johnson, H.H., Paris, P.C.: Subcritical flaw growth. Eng. Fract. Mech. 1, 3–45 (1968)CrossRefGoogle Scholar
  28. 28.
    Bulloch, J.H., Buchanan, L.W.: Fatigue crack growth behavior of A 533-B steel in simulated PWR water. Corros. Sci. 24(8), 661–674 (1984)CrossRefGoogle Scholar
  29. 29.
    Atkinson, J.D., Forrest, J.E.: The role of MnS inclusion in the development of environmentally assisted cracking of nuclear reactor pressure vessel steels. In: Proceedings of the 2nd IAEA Specialist’s Meeting on Subcritical Crack Growth, Moscow, US NRC NUREG/CP-0067 2, 177 (1985)Google Scholar
  30. 30.
    Studies on AISI type 304 stainless steel piping weldments for use in BWR application. EPRI NP-944, Final Report, pp. 2–92 (1978)Google Scholar
  31. 31.
    Scott, P.M., Traswell, A.E.: The influence of water chemistry on fatigue crack propagation in LWR pressure vessel steels. In: Proceedings of the IAEA Specialists’ Meeting on Subcritical Crack Growth, NUREG/CP-0044 2, 91–126 (1981)Google Scholar
  32. 32.
    Green, J.A.S., Hyden, H.V.: Influence of two modes of loading on the stress corrosion susceptibility of Ti8Al1Mo1 V alloy in various chloride containing environments. In: Bernstain, I.M., Thompson, A.W. (eds.): Effects of Hydrogen in Metals, Metals Park OH, pp. 235–244 (1974)Google Scholar
  33. 33.
    Green, J.A.S., Hyden, H.V.: The hydrogen assisted cracking in ultra high-strength steels. In: Bernstain, I.M., Thompson, A.W. (eds.): Effects of Hydrogen in Metals, Metals Park, OH, pp. 235–244 (1974)Google Scholar
  34. 34.
    Thompson, A.W., Bernstein, I.M.: Stress corrosion cracking of AISI 304L and AISI 316L stainless steels. In: Fontana, M.G., Staehle, R.W. (eds.) Advances in Corrosion Sciences and Technology 7, p. 53 Plenum Press, New York (1980)Google Scholar
  35. 35.
    Riecke, R.M., Athens, A., Smith, I.O.: Mater. Sci. Technol. 2, 1066 (1986)Google Scholar
  36. 36.
    John, C.F.: The effect of crack loading mode on stress corrosion cracking. Scr. Metall. 9, 141 (1974)Google Scholar
  37. 37.
    Ruther, W.E., Kassner, T.F., Nichols, F.A.: Mechanistic studies in environmentally assisted cracking in light water reactors. NUREG/CR-4287, ANL-85-33, Annual Report, p. 121 (1985)Google Scholar
  38. 38.
    Johnson, H.H., et al.: Hydrogen crack initiation and delayed failure in steel. Trans. AIME 212, 526–536 (1958)Google Scholar
  39. 39.
    Darken, L.S., et al.: Behavior of hydrogen in steel during and after immersion in acid. Hydrogen damage, ASM, 60–75 (1977)Google Scholar
  40. 40.
    Germer, L.H., Macrae, A.U.: Adsorption of hydrogen on a (110) nickel surface. J. Appl. Phys. 37, 1382 (1962)Google Scholar
  41. 41.
    Van der Sluys, W.A.: Mechanisms of environmental induced subcritical flaw growth in AISI 4340 steel. Eng. Fract. Mech. 1, 447–462 (1968)CrossRefGoogle Scholar
  42. 42.
    Oriani, R.A., Josephic, P.H.: Equilibrium aspects of hydrogen-induced cracking of steels. Acta Metall. 22(9), 1065–1074 (1974)CrossRefGoogle Scholar
  43. 43.
    Oriani, R.A.: Stress-Corrosion Cracking and Hydrogen Embrittlement in Iron-Base Alloys, p. 351. NACE Publication, Houston (1977)Google Scholar
  44. 44.
    Bastien, P., Azou, P.: Proceeding World Metallurgical Congress, 1st American Society of Metals, 535–552 (1951)Google Scholar
  45. 45.
    Beachem, C.D.: A new model for hydrogen-assisted cracking. Metall. Trans. 3, 437–451 (1972)CrossRefGoogle Scholar
  46. 46.
    Tien, J.K. et al.: Hydrogen transported by dislocations. Metall. Trans. 7A, 821–829 (1976)Google Scholar
  47. 47.
    Lynch, S.P.: Cleavage fracture in face-centred cubic metals. Met. Sci. 15, 463–467 2, 189–200 (1981)MathSciNetGoogle Scholar
  48. 48.
    Hirth, J.P.: Effects of hydrogen on the properties of iron and steel. Metall. Trans. 11A, 861–890 (1980)Google Scholar
  49. 49.
    Latanision, R.M., Opperhauser, H.: A molecular orbital model of intergranular embrittlement. Metall. Trans. 5, 483 (1974)CrossRefGoogle Scholar
  50. 50.
    Jones, R.H.: A review of combined impurity segregation-hydrogen embrittlement processes. In: Latanision, R.M., Fischer, T.E. (eds.), Advances in the Mechanics and Physics of Surfaces. Scientific and Technical Book Service (1986)Google Scholar
  51. 51.
    Raj, R., Varadan, V.K.: Mechanism of environment sensitive cracking of materials. In: Swann, P.R., Ford, F.P., Westwood, A.R.C. (eds.) The Metals Society, p. 426. University of Surrey, England (1977)Google Scholar
  52. 52.
    Scully, J.C., Powell, D.T.: The effect of strain-rate upon stress corrosion crack velocity in [alpha]-brass in ammoniacal solutions. Corros. Sci. 10, 719 (1970)CrossRefGoogle Scholar
  53. 53.
    McCoy, R.A., Gerberich, W.W.: Current understanding of the mechanisms of stress corrosion and corrosion fatigue. Metall. Trans. 4, 539 (1973)CrossRefGoogle Scholar
  54. 54.
    McCoy, R.A.: Effects of hydrogen on the high-temperature flow and fracture characteristics of metals. In: Bernstain, I.M., Thompson, A.W. (eds.) Effects of Hydrogen in Metals, p. 169. ASM Publication, New York (1973)Google Scholar
  55. 55.
    Bernstein, I.M., Thompson, A.W.: The role of metallurgical variables in hydrogen assisted environmental fracture. Rockwell Science Center Report, SCPP-75-63 (1976)Google Scholar
  56. 56.
    Zapffe, C.A., Sims, C.E.: Hydrogen embrittlement, internal stress and defects in steel. Trans. AIME 145, 225–259 (1941)Google Scholar
  57. 57.
    Tetelman, A.J., Robertson, W.D.: Current understanding of the mechanisms of stress corrosion and corrosion fatigue. Trans. AIME 224, 775 (1962)Google Scholar
  58. 58.
    Tetelman, A.J.: Fracture of Solids, p. 671. Wiley, New York (1963)Google Scholar
  59. 59.
    Petch, N.O., Stables, P.: Embrittlement of 4130 steel by low-pressure gaseous hydrogen. Nature 169, 842–843 (1952)CrossRefGoogle Scholar
  60. 60.
    Barnett, W.J., Troiano, A.R.: Testing for hydrogen environment embrittlement: primary and secondary influences. J. Met. 209, 486–494 (1957)Google Scholar
  61. 61.
    Griffith, A.A.: The phenomena of rupture and flow in solids. Transactions of royal society of London 221 (1920)Google Scholar
  62. 62.
    Zubko, A.M., Malkin, V.I., Medvedev, É.A., Pokidyshev, V.V., Khokhlov, S.F., Shnol, E.M.: Effect of phosphorus and sulfur on hydrogen absorption in high-strength steel and its suscptibility to corrosion cracking. Met. Sci. Heat Treat. 15(12), 1071–1073 (1973)CrossRefGoogle Scholar
  63. 63.
    Bowker, P., Hardie, D.: The effect of pre-straining and [delta]-ferrite on the embrittlement of 304L stainless steel by hydrogen. Met. Sci. 9, 432 (1975)CrossRefGoogle Scholar
  64. 64.
    Lu, M., Pao, P.S., Weir, T.W., Simmons, G.W., Wei, R.P.: Rate controlling processes for crack growth in hydrogen sulfide for an AISI 4340 steel. Met. Trans. 12, 805–811 (1981)CrossRefGoogle Scholar
  65. 65.
    Gao, M., Lu, M., Wei, R.P.: Crack path and hydrogen assisted crack growth response in AISI 4340 steel. Met. Trans. 15, 735–746 (1984)CrossRefGoogle Scholar
  66. 66.
    Gangloff, R.P., Wei, R.P.: Gaseous hydrogen embrittlement of high strength steels. Met. Trans. 8, 1043–1053 (1977)CrossRefGoogle Scholar
  67. 67.
    Gangloff, R.P., Wei, R.P.: Fractography in Failure Analysis, ASTM STP 645, pp. 87–106. ASTM International, West Conshohocken (1978)CrossRefGoogle Scholar
  68. 68.
    Fujita, F.E.: Theory of hydrogen induced delayed fracture of steels. In: 2nd International Congress on Hydrogen in Metals, Paper 2B10, Paris (1977)Google Scholar
  69. 69.
    Chopra, O.K., Shack, W.J.: Effect of LWR coolant environments on fatigue design curves of carbon and low-alloy steels. NRC NUREG/CR-6583 (1997)Google Scholar
  70. 70.
    Hanninen, H., Torronen, K., Kemppainen, M., Solonen, S.: On the mechanisms of environment sensitive cyclic crack growth of nuclear reactor pressure vessel steels. Corros. Sci. 23, 663 (1983)CrossRefGoogle Scholar
  71. 71.
    Groeneveld, T.P., Fessler, R.R.: Hydrogen stress cracking overview and controls. 6th Symposium on Line Pipe Research, Pipeline Research Committee of American Gas Ass., p. Y-17–Y-18, Huston TX (1979)Google Scholar
  72. 72.
    Atkinson J.D., Bulloch J.H., Forrest J.E.: A Fractographic Study of Fatigue Cracks Produced in A533B Pressure Vessel Steel Exposed to Simulated PWR Primary Water Environment. Proceedings of the 2nd IAEA Specialist’s meeting on subcritical crack growth, Moscow, US NRC NUREG/CP-0067 2, 290 (1985)Google Scholar
  73. 73.
    Phelps, E.H.: Microscopic identification of stress-corrosion cracking in steels with high yield strength. Specialists meeting on stress corrosion testing methods, AGARD Conference, AGARD-CP-98, 24–10 (1972)Google Scholar

Copyright information

© Springer-Verlag Italia 2013

Authors and Affiliations

  1. 1.Department of Civil and Mechanical EngineeringUniversity of Cassino, ItalyCassino (Rome)Italy

Personalised recommendations