Crack Tip Plastic Zone Effect on Fatigue Crack Propagation

  • Pietro Paolo Milella


The Paris-Erdogan equation can predict fatigue crack propagation only under particular conditions. It fails when R≠0 or under variable amplitude loads or with small cracks and cannot predict overload retardation etc. in all these cases fatigue crack propagation depends on what is actually happening at the crack tip in the plastic zone. Therefore, the study of the plastic zone behavior is fundamental to address the fatigue crack propagation issue and adjourn the Paris-Erdogan equation.


Plastic Zone Fatigue Crack Growth Crack Closure Linear Elastic Fracture Mechanic Fatigue Crack Propagation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Griffith, A.A.: The phenomena of rupture and flow in solids. Roy. Soc. Trans., Ser A 221, 163–198 (1920)CrossRefGoogle Scholar
  2. 2.
    Milella, P.P.: A fatigue crack growth theory based upon energy considerations, pp. 484–508. IAEA Specialists’ Meeting on Subcritical Crack Growth, Freiburg, Federal Republic of Germany (1981)Google Scholar
  3. 3.
    Milella, P.P.: A fatigue crack growth theory based upon energy considerations. further development on small crack behavior and R ratio effect. Fatigue and fracture mechanics, Twenty-Ninth Volume. ASTM-STP 1332 (1999)Google Scholar
  4. 4.
    Wessel, E.T., Clarck, W.G. Jr.: Fracture prevention procedure for heavy section components. ASM conference on fracture control (1970)Google Scholar
  5. 5.
    Vecchio, R.S., Crompton, J.S., Hertzberg, R.W.: The influence of specimen geometry on near threshold fatigue crack growth. Fatigue Fract. Engng. Mater. Struct. 10(4), 333–342 (1987)CrossRefGoogle Scholar
  6. 6.
    Amzallag, C., Rabbe, P., Bathias, C., Benoit, D., Truchon, M.: Influence of variou parameters on the determination of the fatigue crack arrest threshold. ASTM STP , American Society for Testing and Materials, 738, 29–44 (1981)Google Scholar
  7. 7.
    Ogawa, T., Tokaji, K., Ohya, K.: The effect of microstructure and fracture surface roughness on fatigue crack propagation in a Ti-6Al-4 V alloy. Fatigue Fract. Engng. Mater. Struct. 16(9), 973–982 (1993)CrossRefGoogle Scholar
  8. 8.
    Basic Fracture Mechanics for Nuclear Applications. Westinghouse Course on Fracture Mechanics to ENEA-ENEL, Rome, Westinghouse data from W.G. Clark Jr., Italy, 6–8 March (1978)Google Scholar
  9. 9.
    Tanaka, K.: Mechanics and micromechanics of fatigue crack propagation. Am. Soc. Test Mater, ASTM STP 1020, 151–183 (1989)Google Scholar
  10. 10.
    Rolfe, S.T., Barsom, J.M.: Fracture and Fatigue Control in Structure. Prentice-Hall, Englewood Cliff (1977)Google Scholar
  11. 11.
    Klesnil, M., Lukas, P.: Effects of stress cycle asymmetry on fatigue crack growth. Mater. Sci. Eng. 9, 231–240 (1972)CrossRefGoogle Scholar
  12. 12.
    Hopkinns, S.W., Rau Jr, C.A.: Prediction of structural crack growth behavior under fatigue loading. ASTM STP 738, 255–270 (1981)Google Scholar
  13. 13.
    Walker, E.K.: The Effect of Stress Ratio During Crack propagation and fatigue for 2024-T3 and 7075-T6 Aluminum. ASTM STP, American Society for Testing and Materials, Philadelphia, 462 (1970)Google Scholar
  14. 14.
    Crooker. T.W.: Effect of tension-compression cycling on fatigue crack growth in high-strength alloy. Naval Research Laboratory Report 7220, Washington DC (1971)Google Scholar
  15. 15.
    Crooker, T.W., Krauser, D.J.: The Influence of Stress Ratio and Stress Level on Fatigue Crack growth Rates in 140-Ksi HY Steel. Naval Research Laboratory Report, Washington DC (1972)Google Scholar
  16. 16.
    Miller, M.S., Gallagher, J.P.: An analysis of several fatigue crack growth rate (FCGR) description. ASTM STP 738, 205–251 (1981)Google Scholar
  17. 17.
    Elber, W.: Fatigue crack closure under cyclic tension. Eng. Fract. Mech. 2, 37–45 (1970)CrossRefGoogle Scholar
  18. 18.
    Gomez, M.P., Ernst, H., Vazquez, J.: On the validity of erber, s results on fatigue crack closure for 2024–T3 aluminum. Int. J. Fract. 12, 178–180 (1976)Google Scholar
  19. 19.
    Clerivet, A., Bathias, C.: Study of crack tip opening under cyclic loading taking into account the environment and R s. Eng. Fract. Mech. 12, 599–611 (1979)CrossRefGoogle Scholar
  20. 20.
    Schijve, J.: Some formulas for the crack opening stress level. Eng. Fract. Mech. 14, 461–465 (1981)CrossRefGoogle Scholar
  21. 21.
    Castro, D.E., Marci, G., Munz, D.: A generalized concept of a fatigue threshold. Fatigue Fract. Eng. Mater. Struct. 10(4), 305–314 (1987)CrossRefGoogle Scholar
  22. 22.
    Zhang, S., Marissen, R., Shulte, K., Trautmann, K.K., Nowak, H., Schijve, J.: Crack propagation studies on Al 7475 on the basis of constant amplitude and selective variable amplitude loading histories. Fatigue Fract. Eng. Mater. Struct. 10(4), 315–332 (1987)CrossRefGoogle Scholar
  23. 23.
    Newman, J.C. Jr.: American Society for Testing and Materials, ASTM STP , Methods and Models for Predicting Fatigue Crack Growth under Random Loading,748, 55–84 (1981)Google Scholar
  24. 24.
    Newman Jr, J.C.: Prediction of fatigue crack growth under variable-amplitude using a closure model. Am. Soc. Test. Mater., ASTM STP 761, 255–277 (1982)Google Scholar
  25. 25.
    Suresh, S., Ritchie, R.O.: Propagation of short fatigue cracks. Int. Metall. Rev. 29, 455–476 (1984)Google Scholar
  26. 26.
    Rice, J.R.: The mechanism of crack tip deformation and extension by fatigue. fatigue crack propagation. ASTM STP 415, 247–309 (1967)Google Scholar
  27. 27.
    Hardrath, H.F., McEvily, A.T.: Engineering aspects of fatigue crack propagation. proceeding of crack propagation symposium 1, Cranfield, England (1961)Google Scholar
  28. 28.
    Schijve, J.: Significance of Fatigue Cracks in Micro-Range and Macro-Range. Fatigue Crack Propagation. ASTM STP, 415 (1967)Google Scholar
  29. 29.
    McMillan, J.C., Pelloux, R.M.N.: Fatigue crack propagation under program and random loads. Fatigue crack propagation. ASTM STP, 415 (1967)Google Scholar
  30. 30.
    Von Euw, E.F.J., Hertzberg, R.W., Roberts, R.: Delay effects in fatigue crack propagation. ASTM STP 513, 230–259 (1972)Google Scholar
  31. 31.
    Wheeler, O.E.: Spectrum loading and crack growth. General dynamic report FZM 5602, Fort Worth (1970)Google Scholar
  32. 32.
    Wheeler, O.E.: Spectrum loading and crack growth. J. Basic Eng. 44, 181–186 (1972)CrossRefGoogle Scholar
  33. 33.
    Schijve, J.: Fatigue Crack Propagation in light Alloy Sheet Material and Structures. Pergamon Press, Oxford (1961)Google Scholar
  34. 34.
    Cotterill, P.J., Knott, J.F.: Overload retardation of fatigue crack growth in 9 %Cr 1 %Mo steel at elevated temperatures. Fatigue Fract. Eng. Mater. Struct. 16(1), 53–70 (1993)CrossRefGoogle Scholar
  35. 35.
    Elber, W.: The significance of fatigue crack closure. ASTM STP 486, 230–242 (1971)Google Scholar
  36. 36.
    Bernard, P.J., Lindley, T.C., Richard, C.E.: Mechanisms of overload retardation during fatigue crack propagation. ASTM STP 595, 78–97 (1976)Google Scholar
  37. 37.
    Schijve, J.: The accumulation of fatigue damage in aircraft materials and structures. AGARD conference, symposium on random load fatigue, 118, 3–82 (1972)Google Scholar
  38. 38.
    Kim, S., Tai, W.: Retardation and arrest of fatigue crack growth in AISI 4340 steel by introducing rest periods and overload. Fatigue Fract. Eng. Mater. Struct. 15(6), 519–530 (1992)CrossRefGoogle Scholar
  39. 39.
    Pearson, S.: Initiation of fatigue cracks in commercial aluminum alloys and the subsequent propagation of very short cracks. Eng. Fract. Mech. 7, 235 (1975)CrossRefGoogle Scholar
  40. 40.
    Kitagawa, H., Takahashi, S.: Applicability of fracture mechanics to very small cracks or the cracks in the very early stage. Proceedings of the 2nd International Conference Mechanical Behavior of Materials, p. 627, Boston (1976)Google Scholar
  41. 41.
    Lankford, J.: Initiation and early growth of fatigue cracks in high strength steel. Eng. Fract. Mech. 9, 617–624 (1977)CrossRefGoogle Scholar
  42. 42.
    Taylor, D., Knott, J.F.: Fatigue crack propagation behaviour of short cracks; the effect of microstructure. Fatigue Eng. Mater. Struct. 4, 147–155 (1981)CrossRefGoogle Scholar
  43. 43.
    Brown, C.W., Hicks, M.A.: A study of short fatigue crack growth behavior in titanium alloy IMI 685. Fatigue Eng. Mater. Struct. 6, 46–67 (1983)CrossRefGoogle Scholar
  44. 44.
    Clement, P., Angeli, J.P., Pineau, A.: Short crack behavior in nodular cast iron. Fatigue Eng. Mater. Struct. 7(4), 251–265 (1984)CrossRefGoogle Scholar
  45. 45.
    Yokobori, T., Kuribayashi, H., Kawagishi, M., Takeuchi, N.: Study of initiation and propagation of fatigue cracks in tempered martensitic high strength steel by plastic-replication method and scanning microscope. Rep. of the Research Inst. For Strength and Fracture of the Materials, Tohoku University, Sendai, Japan, pp. 1–23 (1971)Google Scholar
  46. 46.
    Lankford, J.: Initiation and early growth of fatigue cracks in high strength steels. Eng. Fract. Mech. 9, 617–624 (1977)CrossRefGoogle Scholar
  47. 47.
    Lankford, J., Cook, T.S., Sheldon, G.P.: Fatigue micro cracks growth in nickel base superalloy. Int. J. Fract. 17, 143–155 (1981)CrossRefGoogle Scholar
  48. 48.
    Lankford, J.: The influence of microstructure on the growth of small fatigue cracks. Fatigue Fract. Eng. Mater. Struct. 8(2), 161–175 (1985)CrossRefGoogle Scholar
  49. 49.
    Lankford, J.: The effect of the environment on the growth of small fatigue cracks. Fatigue Eng. Mater. Struct. 6, 15–31 (1983)CrossRefGoogle Scholar
  50. 50.
    Barsom, J.M.: Fatigue crack growth under variable amplitude loading in ASTM A514 grade B steel. ASTM STP 536, 147–167 (1973)Google Scholar
  51. 51.
    Wei, R.P., Shih, T.T.: Delay in fatigue crack growth. Int. J. Fract. 10(1), 77–85 (1974)CrossRefGoogle Scholar
  52. 52.
    Wheeler, O.E.: Spectrum loading and crack growth. genaral dynamics report FZM 5602 (1970)Google Scholar
  53. 53.
    Willemborg, J., Engle, R.M., Wood, H.A.: A crack growth retardation model using an effected stress concept. technical memorandum 71-1-FBR, Air force flight dynamics laboratory (1971)Google Scholar

Copyright information

© Springer-Verlag Italia 2013

Authors and Affiliations

  1. 1.Faculty of EngeneeringUniversity of Cassino, ItalyCassino (FR)Italy

Personalised recommendations