Fracture Mechanics Approach to Fatigue Crack Propagation: Measurements and Observation

  • Pietro Paolo Milella


There where conventional fatigue terminates with the generation of the first macrocrack, fatigue crack growth initiates, whose characteristic progression can be treated using fracture mechanics with the Paris-Erdogan equation. Fatigue crack growth rates of various steels, aluminum, nickel and titanium alloys are reviewed together with the basic growth mechanism and the effect of fracture toughness and temperature..


Fatigue Crack Stress Intensity Factor Fatigue Crack Growth Linear Elastic Fracture Mechanic Fatigue Crack Propagation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Paris, P.C., Erdogan, F.: A critical analysis of crack propagation lows. J. Basic Eng. 85, 528–534 (1960)CrossRefGoogle Scholar
  2. 2.
    Paris, P.C., Gomez, M.P., Anderson, W.P.: A rational analytical theory of fatigue. Trend Eng. 13, 9–14 (1961)Google Scholar
  3. 3.
    Clark, W.G. Jr.: How cracks grow in structural steels. In: Metal Progress, pp. 81–86 (1970)Google Scholar
  4. 4.
    Frost, N.E.: Propagation of fatigue cracks in various sheet. materials. J. Mech. Eng. Sci. 1(2), 151 (1959) Google Scholar
  5. 5.
    Liu, H.W.: Fatigue crack propagation and the stresses and strains in the vicinity of a crack. Allied Mater. Res. 3(4), 229 (1964)Google Scholar
  6. 6.
    Weibull, W.: Theory of fatigue crack propagation in sheet specimens. Acta Metall. 11(2), 725 (1963)Google Scholar
  7. 7.
    Irwin, G.: Analysis of stresses and strains near the end of a crack traversing a plate. J. Appl. Mech. 24, 361–364 (1957)Google Scholar
  8. 8.
    Paris, P.C.: The Fracture Mechanics Approach to Fatigue. In: Proceedings of the 10th Sagamore Conference, p. 107, Syracuse Press (1965)Google Scholar
  9. 9.
    Swanson, S.R., Cicci, F., Hoppe, W.: Crack Propagation in Clad 7079-T6 Aluminum Alloy Sheet under Constant and Random Amplitude Fatigue Loading. ASTM-STP 415 (1868)Google Scholar
  10. 10.
    Forman, R.G., Kearney, V.E., Engle, R.M.: Numerical analysis of crack propagation in cyclic loaded structures. J. Basic Eng. 89, 459–464 (1967)CrossRefGoogle Scholar
  11. 11.
    Weertman, J.: Rate of growth of fatigue cracks calculated from the theory of infinitesimal dislocations distributed on a plane. Int. J. Fract.Mech. 2, 460–467 (1966)Google Scholar
  12. 12.
    Klesnil, M., Lukas, P.: Influence of strength and stress history on growth and stabilization of fatigue cracks. Eng. Fract. Mech. 4, 77–92 (1972)CrossRefGoogle Scholar
  13. 13.
    McEvily, A.J.: On closure in fatigue crack growth. ASTM STP 982, 35–43 (1988)Google Scholar
  14. 14.
    Dowling, N.E., Begley, J.A.: Fatigue crack growth during gross plasticity and the J integral. ASTM STP 590, 82–103 (1976)Google Scholar
  15. 15.
    Newman, J.C. Jr.: Methods and models for predicting fatigue crack growth under random loading. ASTM STP 748, 55–84 (1981)Google Scholar
  16. 16.
    McClintok, F.A.: Discussion of the influence of metallurgical structure on the mechanisms of FCP by C. Laird. ASTM STP 425, 170–174 (1967)Google Scholar
  17. 17.
    Clark, W.G. Jr., Ceschini, L.J.: An Ultrasonic Crack Growth Monitor. Westinghouse Scientific Paper 68-7D7-BFPWR-P1 (1968)Google Scholar
  18. 18.
    Joice, J.A., Schneider, C.S.: Application of Alternating Current Potential Difference to Crack Length Measurement During Rapid Loading. US-NRC, NUREG/CR-4699 (1986)Google Scholar
  19. 19.
    Steigerwald, E.A., Hanna, G.L.: Proceedings of American Society for Testing and Materials 62, 885 (1962)Google Scholar
  20. 20.
    Wei, R.P., Talda, P.M., Li, C.-Y.: Fatigue crack propagation. ASTM STP 415, 460 (1967)Google Scholar
  21. 21.
    Ritchie, R.O., Garret, G.G., Knott, J.F.: Crack-growth monitoring: optimization of the electrical potential drop. Int. J. Fracture 7, 462 (1971)Google Scholar
  22. 22.
    Schwalbe, K.H., Hellman, D.: The Application of the electric potential method to crack length measurement using johnson’s formula. JTEVA 9(3), 218–221 (1981)Google Scholar
  23. 23.
    Vassilaros, M.G., Hackett, E.M.: J-integral R-curve testing of high strength steel using potential drop met. ASTM STP 833, 535–552 (1984)Google Scholar
  24. 24.
    Wei, R.P., Brazill, R.L.: An assessment of A-C and D-C potential systems for monitoring fatigue crack growth. ASTM STP 738, 103–119 (1981)Google Scholar
  25. 25.
    Imhof, E.J., Barsom, J.M.: Fatigue and corrosion fatigue crack growth of 4340 steel at various yield strength. ASTM STP 536 (1973)Google Scholar
  26. 26.
    Hertzberg, R.W., Paris, P.C.: Application of Electron Fractography and Fracture Mechanics to Fatigue Crack Propagation. In: Proceedings of 1st International Conference on Fracture, Sendai, Japan, vol. 1, pp. 459–478 (1965)Google Scholar
  27. 27.
    Bates, R.C., Clark, W.G., Moon, D.M.: Correlation of fractographic features with fracture mechanics data. ASTM STP 453, 192–214 (1969)Google Scholar
  28. 28.
    Kershaw, J., Liu, H.W.: Electron fractography and fatigue crack propagation in 7075–T6 aluminum sheet. Int. J. Fract.Mech. 7, 269–276 (1971)Google Scholar
  29. 29.
    Bathias, C., Pelloux, R.M.: Fatigue crack propagation in martensitic and austenitic steels. Metall. Trans. 4, 1265–1273 (1973)CrossRefGoogle Scholar
  30. 30.
    Pickard, A.C, Ritchie, R.O., Knott, J.F.: Fatigue crack propagation in type 316 stainless steel weldment. Metall. Technol. 2, 253–263 (1975) Google Scholar
  31. 31.
    Yokobory, T., Sato, K.: The effect of frequency on fatigue crack propagation rate and striation spacing in 2024–T3 aluminum alloy and SM-50 steel. Eng. Fract. Mech. 8, 81–88 (1976)CrossRefGoogle Scholar
  32. 32.
    Mills, W.J., James, L.A.: Effect of temperature on the fatigue crack propagation behaviour of inconel X-750. Fatigue Eng. Mater. Struct. 3(2), 159–175 (1980)CrossRefGoogle Scholar
  33. 33.
    Paris, P.C.: The fracture mechanics approach to fatigue. In: Burke J.J. et al.: Fatigue-An Interdisciplinary Approach. In: Proceedings of the 10th Sagamore Army Materials Research Conference 3, Syracuse University Press, Syracuse NY, pp. 107–127 (1964)Google Scholar
  34. 34.
    Pelloux, R.M.N.: Mechanism of formation of ductile fatigue striations. Trans. ASM 62, 281–285 (1969)Google Scholar
  35. 35.
    McMinn, A.: Fractographic Analysis in the Understanding of Corrosion fatigue Mechanisms. In: Proceedings International Atomic Energy Agency, Specialists’ meeting on Subcritical Crack Growth, Nureg/CP-0044 vol. 2, pp. 3–26, Freiburg, Germany (1981)Google Scholar
  36. 36.
    Hertzberg, R.W., Mills, W.J.: Character of fatigue fracture surface micromorphology in ultra-low growth rate regime. ASTM STP 600, 220 (1976)Google Scholar
  37. 37.
    Murakami, Y., Hamada, S.: A new method for the measurement of MODE II fatigue threshold stress intensity factor range ΔKτth. Fatigue Fracture of Eng. Mater. Struct. 20(6), 863–870 (1997)CrossRefGoogle Scholar
  38. 38.
    Tschegg, E.K., Stanzl, S.E., Mayer, H.R., Czegley, M.: Crack face interaction and near-threshold fatigue cracl growth. Fatigue Fracture Eng. Mater. Struct. 16(1), 71–82 (1992)CrossRefGoogle Scholar
  39. 39.
    Yates, J.R., Miller, K.J.: Mixed mode (I + III) fatigue threshold in a forging steel. Fatigue Fracture Eng. Mater. Struct. 12(3), 259–270 (1989)CrossRefGoogle Scholar
  40. 40.
    Barsom, J.M.: Fatigue crack propagation in steel of various yield strength. J. Eng. Ind. Transactions ASME, Series B 93(4) (1971)Google Scholar
  41. 41.
    Barsom, J.M., Imhof, E.J., Rolfe, S.T.: Fatigue crack propagation in high strength steels. J. Eng. Fracture Mech. 2(4) (1971)Google Scholar
  42. 42.
    Matocha, K. Wozniak, J., Siegl, J.: The Effect of Strain Aging on the Propagation of Fatigue Cracks in NiMoV (AISI 1018) Low Alloy Steel. In: Proceedings of the IAEA Specialists’ Meeting on Thermal and Mechanical Degradation in RPV Materials, Abington, Nov 19–21, p. 167 (1991)Google Scholar
  43. 43.
    Paris, P.C., Bucci, R.J., Wessel, E.T., Clark, G.W., Mager, T.R.: Extensive Study of Low Crack Growth Rates in A533 and A508 Steels. In: Proceedings of the 1971 National Symposium on Fracture Mechanics, Part I, ASTM STP vol. 513, pp. 141–176 (1972)Google Scholar
  44. 44.
    Tsuji, H., Yokoyama, N., Nakajima, H., Kondo, T.: Statistical Analysis of Variability/Reproducibility of Environmentally Assisted Cyclic Crack Growth Rate Data Relative to K Modes. In: Proceedings of the 3rd International Atomic Energy Agency Specialists’ Meeting on Subcritical Crack Growth. NUREG/CR0112 vol. 1, pp. 231–251 (1990)Google Scholar
  45. 45.
    Cullen, W.H., Loss, F.J., Watson, H.E.: Design Operation and Inspection Relevant Factors of Fatigue Crack growth rates for Pressure Vessel and Piping Steels. Nureg/CP-0044 1, IAEA, Specialists’ Meeting on Subcritical Crack Growth, p. 127 (1981)Google Scholar
  46. 46.
    Kondo, T., Kuniya, J., Takaku, H., Tokimasa, K., Arii, M., Kurihara, M.: Recent Study on Cyclic Crack Growth of Reactor Pressure Boundary Materials in High Temperature Water Environment in Japan. In: Proceedings 2nd IAEA Spec. Meet. Sub. Crack Growth, NUREG/CP-0067 1, 219–249 (1985)Google Scholar
  47. 47.
    Mager, T.R., Landes, J.D., McLuoghlin, V., Moon, D.M.: The Effect of Low Frequencies on the Fatigue Crack Growth Characteristics of A533B Class 1 Plate in an Environment of High Temperature Primary Grade Nuclear Reactor Water. HSST Report 35 (1973)Google Scholar
  48. 48.
    Clark, W.G. Jr.: Fatigue Crack Growth Characteristic of ASTM A533 Grade B, Class 1 Steel Base Plate, Weld Metal and Heat Affected Zone. Westinghouse Research Report 69-7E7-BFPWR-R2, Oct (1969). Also Basic Fracture Mechanics for Nuclear Applications. Westinghouse Presentation by Mager T., Chirigos J., McGowan J. to ENEA-ENEL, Rome, Italy, 6–8 Mar (1978)Google Scholar
  49. 49.
    Shahinian, P., Watson, H.E., Smith, H.H.: Fatigue crack growth in selected alloy for reactor applications. J. Mater. 7(4) (1972)Google Scholar
  50. 50.
    James, L.A.: Fatigue crack propagation behavior of pressure vessel steels. Bulletin 194, Welding Research Council NY (1974)Google Scholar
  51. 51.
    James, L.A.: Fatigue crack propagation in austenitic stainless steels. At. Energy Rev. 14, 34–86 (1976)Google Scholar
  52. 52.
    Banford, W.: Fatigue Crack growth of Stainless Steel Piping in PWR Environment. ASME Paper 77-PVP-34, J. Press. Vessel Technol. (1979)Google Scholar
  53. 53.
    Bernard, J.L., Slama, G, Amzallag, C., Rabbe, P.: Influence of PWR Environment on Fatigue Crack Growth Beaviour of Stainless Steels. Time and Load Dependent Degr. of Press. Bound. Matrls., Int. Atomic Ener. Agency, IWG-RRPC-79/2, Innsbruck, Austria (1978)Google Scholar
  54. 54.
    James, L.A.: Fatigue crack propagation in a cast stainless steel in a pressurized water reactor environment. ASME Paper 77-PVP 34 (1977)Google Scholar
  55. 55.
    Joyce, J.A., Hackett, E.M., Roe, C.: Effect of Cyclic Loading on the Deformation and Elastic-Plastic Fracture Behavior of a Cast Stainless Steel. David Taylor research Center, DTRC/SME-91-11 (1991)Google Scholar
  56. 56.
    Makhlouf, K., Jones, J.W.: Effect of temperature and frequency on fatigue crack growth in 18 %Cr ferritic stainless steel. Int. J. Fatigue 15, 163–171 (1993)CrossRefGoogle Scholar
  57. 57.
    Clark, W.G. Jr., Bates, R.C.: Microscopic aspects of fracture toughness. Westinghouse Scientific Paper 69-1E7-RDAFC-P1 (1969)Google Scholar
  58. 58.
    Ambriz, R.R., Mesmacque, G., Benhamena, A., Ruiz, A., Amrouche, A., Lopez, V.H.: Fatigue Crack Growth Behaviour in 6061-T6 Aluminum alloy welds obtained by MIEAGoogle Scholar
  59. 59.
    Miller, M.S., Gallagher, J.P.: An analysis of several Fatigue crack Growth Rate (FCGR) description. ASTM STP 738, 205–251 (1981)Google Scholar
  60. 60.
    Marukamai, Y., Shiraishi, N., Furukawa, K.: Estimation of service loading from the width and heigth of fatigue striations of 2017–T4 Al alloy. Fatigue Fract. Engng. Mater. Struct. 14(9), 897–906 (1991)CrossRefGoogle Scholar
  61. 61.
    Crooker, W.T.: Crack Propagation in Aluminum Alloys under High Amplitude Cyclic Loads. Naval research laboratory, Report 7286 (1971)Google Scholar
  62. 62.
    Clark, W.G. Jr.: How fatigue crack initiation and growth properties affect material selection and design criteria. Metals Eng. Q. 16–22 (1974)Google Scholar
  63. 63.
    Rolfe, S.T., Barsom, J.M.: Fracture and fatigue control in structures. In: Application of Fracture Mechanics. Prentice-Hall, NJ (1977)Google Scholar
  64. 64.
    Hopkinns, S.W., Rau Jr, C.A.: Prediction of structural crack growth behavior under fatigue loading. ASTM STP 738, 255–270 (1981)Google Scholar
  65. 65.
    Yoder, G.R., Cooley, L.A., Crooker, T.W.: Procedure for precision measurement of fatigue crack growth rate using crack-opening displacement techniques. ASTM STP 738, 85–102 (1981)Google Scholar
  66. 66.
    James, L.A., Mills, W.J.: An evaluation of the round compact specimen for fatigue crack growth rate testing. ASTM STP 738, 70–82 (1981)Google Scholar
  67. 67.
    Amzallag, C., Baudry, G., Bernard, J.L.: Effect of PWR Environment on the Fatigue Crack Growth of Different Stainless Steels and Inconel Type Alloy. Nureg/CP-0044 1, IAEA, Specialists’ Meeting on Subcritical Crack Growth, 283 (1981)Google Scholar
  68. 68.
    Dowling, N.E.: Fatigue Crack Growth Rate Testing at High Stress Intensity. Westinghouse Scientific Paper 76-IE7-MSLRA-P1 (1976)Google Scholar
  69. 69.
    Shabbits W.O.: Dynamic Fracture Toughness Properties of Heavy Section ASTM A 533 Grade B, Class 1 steel Plate. ORNL Heavy Section Technology Program, Technical Report 16, Westinghouse WCAP-7561 (1970)Google Scholar

Copyright information

© Springer-Verlag Italia 2013

Authors and Affiliations

  1. 1.Department of Civil and Mechanical EngineeringUniversity of Cassino, ItalyCassino (Rome)Italy

Personalised recommendations