Skip to main content

Nature and Phenomenology of Fatigue

  • Chapter
  • First Online:
Fatigue and Corrosion in Metals
  • 9145 Accesses

Abstract

For centuries man has been aware that the repeated applications of loads would lead to the early failure of materials. It came as something of a surprise, however, when he also found, more than a century ago, that failure occurred under stresses of low amplitude, lower than the ultimate tensile strength σ u and even of the yield strength σ y of the material. The phenomenon, known as fatigue, has been long studied since there are very few events, other than fatigue, that can cause every year so many failures, sometimes catastrophic also for the casualties involved. This Chapter will address the issue of fatigue from a phenomenological point of view aiming at unfolding why, how and through what successive fundamental steps fatigue is actually developing and eventually destroying the material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Braithwaite, F.: On the fatigue and consequent fracture of metals. Inst. Civ. Eng. Minutes Proc. XIII, 463–474 (1854). (London)

    Google Scholar 

  2. Poncelet J.V.: Introduction à la Mécanique Industrielle, Physique ou Expérimentale. Zweite Ausgabe. Paris, Imprimerie de Gauthier-Villars (1939)

    Google Scholar 

  3. Albert, W.A.J.: Über Treibseile am Harz. Archiv für Mineralogie. Georgnosie. Bergbau und Hüttenkunde 10, 215–234 (1837)

    Google Scholar 

  4. Wöhler, A.: Über die Festigkeits-Versuche mit Eisen und Sthal. Zeitschrift für Bauwesen XX, 73–106 (1870)

    Google Scholar 

  5. Gough, H.J.: The Fatigue of Metals. Scott, Greenwood, London (1924)

    Google Scholar 

  6. Basquin, O.H.: The exponential low of endurance tests. Proc. Annu. Meet Am. Soc. Test. Mater. 10, 625–630 (1910)

    Google Scholar 

  7. Rankine, W.J.M.: On the causes of unexpected breakage of the journals of the railway axles and on the means of preventing such accidents by observing the law of continuity in their construction. Institution of civil engineers, minutes of proceedings vol. 2, pp. 105–108. London (1842)

    Google Scholar 

  8. Neuber, H.: Theory of Notch Stresses: Principle for Exact Stress Calculation. J.W. Edwards, Publishers, Incorporated, Ann Arbor, Michigan (1946)

    Google Scholar 

  9. Peterson, R.E.: Stress concentration factors. Wiley, New York (1973)

    Google Scholar 

  10. Ewing, J.A., Humfrey, J.C.V.: The fracture of metals under repeated alterations of stress. Philos. Trans. R. Soc. 221, 241–253 (1903)

    Google Scholar 

  11. Douglas, W.D.: Methods employed at the royal aircraft establishment for the experimental determination of the ultimate strength of aeroplane structures. Advis. Comm. Aero. Rep. Memo 476 (1918)

    Google Scholar 

  12. Elber, W.: Fatigue crack propagation: some effects of crack closure on the mechanism of fatigue crack propagation and cyclic tensile loading. Ph.D. thesis, University of New South Wales (1968)

    Google Scholar 

  13. Smith, H.R., Piper, D.E., Downey, F.K.: A study of stress corrosion cracking by wedge-force loading. Eng. Fract. Mech. 1, 123–128 (1968)

    Article  Google Scholar 

  14. Keisler, J., Chopra, O.K., Shack, W.J.: Statistical analysis of fatigue strain-life data for carbon and low-alloy steels. US-NRC, NUREG/CR-6237, Argonne Nat. Lab. (1994)

    Google Scholar 

  15. Environmentally Assisted Cracking in Light Water Reactors. US NRC, NUREG/CR-4667, Vol. 22, Prepared by O.K. Chopra et al. Semiannual Report (1996)

    Google Scholar 

  16. Fatigue Design Handbook. SAE, 2nd Ed., p. 41 (1988)

    Google Scholar 

  17. Fuchs, H.O., Stephens, R.I.: Metal Fatigue in Engineering. Wiley, NY (1980)

    Google Scholar 

  18. Langraf, R.W.: The resistance of metals to cyclic loading. Achievement of high fatigue resist. Alloys. ASTM-STP 467, 27 (1970)

    Google Scholar 

  19. Pardue, T.E., Melcher, J.L., Good, W.B.: Proceeding of society of experimental stress. Analysis 1, 27 (1950)

    Google Scholar 

  20. Yokobori T.: Statistical interpretation of the results of testing of materials. J. Phys. Soc. Jpn 6, 81 (1951)

    Google Scholar 

  21. Dugdale D.S.: Yielding of steel containing slits. J Mech Phys Solids 7, 135 (1959)

    Google Scholar 

  22. Burbach, J.: Zum Zyklischen Verformungsverhalten einiger Technischer Werkstoffe. Technischen Mittelungen Krupp Forschungsberichte 28(2), 55–102 (1970)

    Google Scholar 

  23. Feltner, C.E., Laird, C.: Cyclic stress-strain I of FCC metals and alloys. Acta. Metall. 15, 1621–1653 (1967)

    Article  Google Scholar 

  24. Conway, J.B., Stentz, R.H.: Low-cycle and high-cycle fatigue characteristic of forged and cast 304 SS steel at room temperature and 427 °C. ASME MPC Winner Annu. Meet. 25, 59–145 (1984)

    Google Scholar 

  25. Lipsitt, H.A., Horne, G.T.: The fatigue behavior of decarburized steels. Proceedings of ASTM 57, 592 (1957)

    Google Scholar 

  26. Morrow, J.: Cyclic plastic strain energy and fatigue of metals. Intern. Friction Damping Cyclic Plast ASTM-STP 378, 45 (1965)

    Article  Google Scholar 

  27. Kemsley, D.S.: Internal stresses and fatigue of metals. J Inst. Met 87, 10–15 (1959)

    Google Scholar 

  28. Polakowski, N.H.: Restoration of ductility in cold-worked aluminum. Proceedings ASTM 52, 1086 (1952)

    Google Scholar 

  29. Laird, C.: The influence of metallurgical structure on the mechanisms of fatigue crack propagation. In: 69th ASTM Annual Meeting, Atlantic City NJ, vol. 32, (1966)

    Google Scholar 

  30. Morrow, J.: Cyclic plastic strain energy and fatigue of metals. Am. Soc. Test. Mater. STP-378, 45–87 (1965)

    Google Scholar 

  31. Landgraf, R.W., Morrow, J.D., Endo, T.: Determination of the cyclic stress–strain curve. J. Mater. JMLSA 4(1), 176–188 (1969)

    Google Scholar 

  32. Feltner, C.E., Mitchell, M.R.: 2BASIC Research on the cyclic deformation and fracture behaviour of materials. Manual Low-Cycle Fatigue Test. Am. Soc. Test. Mater. STP 465, 27–66 (1969)

    Google Scholar 

  33. Landgraf, R.W.: Cyclic Deformation and Fracture of Hardened Steels. In: International Conference on Mechanical Behavior of Materials, Kyoto, Japan (1972)

    Google Scholar 

  34. Maier, H.J., Donth, B., Bayerlein, M., Mughrabi, H., Meier, B., Kesten, M., Metallkde, Z.:Low-Temperature fatigue induced martensitic transplantation on the low-cycle fatigue behaviour of stainless steel. 84, 820–843 (1972)

    Google Scholar 

  35. Clark, J.B., McEvily, A.J.: Interaction of dislocation structures in cyclically strained aluminum alloys. Acta Metall. 12(1359) (1964)

    Google Scholar 

  36. Calabrese, C., Laird, C.: C. Stress-strain response of two-phase alloys. Part I. Mater. Sci. Eng 13, 141–150 (1974)

    Google Scholar 

  37. Calabrese, C., Laird, C.: C. Stress-strain response of two-phase alloys. Part II. Mater. Sci. Eng. 13, 149–170 (1974)

    Google Scholar 

  38. Duva, J.M., Daeubler, M.A., Starke, E.A. Jr., Luetjering,G.: Large shearable particles lead to coarse slip in particle reinforced alloys. Acta Metallurgica 36(3), 585 (1988)

    Google Scholar 

  39. Baxter, W.J., McKinney, T.R.: Growth of slip bauds during fatigue of 6061–T6 aluminum. Metall. Trans. 19A, 83 (1988)

    Google Scholar 

  40. Metals Handbook, Properties and Selection. ASM 1, 8th Edition, p. 223 (1975)

    Google Scholar 

  41. Smith, R.W., Hirschberg, M.H., Manson, S.S.: Fatigue behaviour of materials under strain cycling in low and intermediate range. NASA TN D-1574 (1963)

    Google Scholar 

  42. Manson, S.S., Hirschberg, M.H.: Fatigue: an interdisciplinary approach. Syracuse University Press, Syracuse NY, p. 133 (1964)

    Google Scholar 

  43. Gough, H.J.: The Fatigue of Metals. Ernest Benn Ltd, London (1926)

    Google Scholar 

  44. Forrest, P.G.: International Conference on Fatigue, Institution of Mechanical Engineers, p. 171. (1956)

    Google Scholar 

  45. Roberts, E., Honeycombe, R.W.K.: The plastic deformation of metals. J. Inst. Metals 91, 134 (1962–196263)

    Google Scholar 

  46. Haigh, B.P.: Trans. Farady Soc 24, 125 (1928)

    Google Scholar 

  47. Kocanda, S.: Fatigue Failure of Metals. Sijthoff & Noordhoff Int Pubs, Alphena/d Rijd (1978)

    Book  Google Scholar 

  48. Alden, T.H., Backofen, W.A.: Acta Metallurgica 9, 352 (1961)

    Google Scholar 

  49. Ewing, J.A., Humphrey, J.C.: The fracture of metals under repeated alternation of stress. Philos. Trans. R. Soc. A 200, 241–250 (1903)

    Article  Google Scholar 

  50. Hempel, M.R.: Fracture, p. 376. Wiley, New York (1959)

    Google Scholar 

  51. Polak, J.: Cyclic plasticity and low-cycle fatigue life of metals. Elsevier, Amsterdam (1991)

    Google Scholar 

  52. Thompson, N., Wadsworth, N.J., Louat, N.: Philos. Mag. 1(113) (1956)

    Google Scholar 

  53. Forsyth, P.J.E.: Crack Propagation Symposium. Cranfield (1961)

    Google Scholar 

  54. Smith, G.C.: Proc. R. Soc. A 242, (189) (1957)

    Google Scholar 

  55. Jaquet, P.A.: International Conference on Fatigue of Metals, Institute of Mechanical Engineers. ASME, London (1956)

    Google Scholar 

  56. Forsyth, P.J.E, Stubbington, C.A.: Nature 175, 767 (1955)

    Google Scholar 

  57. Mughrabi, H., Ackermann, F., Herz, K.: American Society for Testing and Materials, STP 675, 69 (1979)

    Google Scholar 

  58. Lukáš, P.: Fatigue crack nucleation and microstructure. ASM Handb. Fatigue Fract. 19 (1997)

    Google Scholar 

  59. Lawrence, F.V., Jones, R.C.: Mechanisms of fatigue crack initiation and growth. Metal Trans. 1, 367–393 (1970)

    Article  Google Scholar 

  60. Hempel, M.R.: International Conference on Fatigue, Institution of Mechanical Engineers, p. 543 (1956)

    Google Scholar 

  61. Hempel, M.R.: Fatigue in Aircraft Structure, Columbia University. Academic, New York, p. 83 (1956)

    Google Scholar 

  62. Carstensen, J.V.: Structural Evolution and Mechanisms of Fatigue in Polycrystalline Brass. Risø R-1500(EN), Risø National Laboratory, Roskilde (1998)

    Google Scholar 

  63. Forrest, P.G., Tate, A.E.L.: The influence of grain size on the fatigue behaviour of 70/30 Brass. J. Inst. Met. 93, 38 (1964–1965)

    Google Scholar 

  64. Sinclair, G.M., Craig, W.J.: Influence of grain size on work hardening and fatigue characteristics of alpha brass. ASM Trans. 44, 929–948 (1952)

    Google Scholar 

  65. Kunio, T, Shimizu, M., Yamada, K.: Microstructural aspects of fatigue behaviour of rapid-heat-treated steels. In: Proceedings of 2nd International Conference on Fracture. Chapman and Hall, pp. 630–642 (1969)

    Google Scholar 

  66. Kunio, T., Yamada, K.: Microstructural aspects of threshold condition for non-propagating fatigue cracks in martensitic-ferritic structures. Fatigue Mech. ASTM STP 675, 342–370 (1979)

    Article  Google Scholar 

  67. Klesnil, M., Holzmann, M., Lukáš, P., Ryš, P.: Some aspects of the fatigue behaviour of rapid-heat-treated steel. J. Iron Steel Inst. 203, 47 (1965)

    Google Scholar 

  68. Taira, S., Tanaka, T., Hoshina, M.: Grain size effect on crack nucleation and growth in long life fatigue of low-carbon steel. Fatigue mechanism. American Society for Testing and Materials ASTM STP 675, pp. 135–173 (1979)

    Google Scholar 

  69. Murakami, Y., Matsuda, K.: Poc. Fatifue’87. In: Ravichandram, K.S., Ritchie, R.O., Murakami, Y. (eds.) Small Fatigue Cracks, vol. 1, EMAS, 333–342 (1987)

    Google Scholar 

  70. Nisitani, H.: Behavior so small cracks in fatigue and relating phenomena. The Society of Materials Science, Japan. Current Research in Fatigue Cracks 1, pp. 1–26, Elsevier (1987)

    Google Scholar 

  71. Kitagawa, H., Takahashi, S.: Proceedings Second International Conference on Mechanical Behavior of Materials. ASM, p. 627 (1976)

    Google Scholar 

  72. Lukáš, P., Kunz, L., Weiss, B., Stickler, R.: Notch size effect in fatigue. Fatigue Fract. Eng. Mater. Struct. 12(3), 175–186 (1989)

    Article  Google Scholar 

  73. Hempel, M.: Fatigue of Aircraft Structures. Ed. Freudenthal. Academic, New York (1956)

    Google Scholar 

  74. Kunio, T., Shimuzu, M., Yamada, K., Tamura, M.: In: Fatigue’84, Beevers, C.J. (ed.) EMAS, Warley, p. 817 (1984)

    Google Scholar 

  75. Miller, K.J.: Fatigue fracture of engineering. Mater. Struct. 10, 93 (1987)

    Article  Google Scholar 

  76. Perez Carbonell, E., Brown, M.W.: A study of short crack growth in torsional low cycle fatigue for a medium carbon steel. Eng. Mater. Struct. 9, 15–33 (1986)

    Google Scholar 

  77. Lukáš, P.J., Kunz, L.: Short Fatigue cracks. ESIS 13. In: Miller, K.J., De los Rios, E.R.: Mechanical Engineering Publications, London p. 265, (1992)

    Google Scholar 

  78. Fine, M.E., Kwon, I.B.: Fatigue crack initiation along slip bands. The behaviour of short fatigue cracks. EGF 1, Mechanical Engineering Publications, pp. 29–40 (1986)

    Google Scholar 

  79. Vašek, A., PolákJ.: Low cycle fatigue damage accumulation in Armco-iron. Kovové Materiály 29, 113 (1991)

    Google Scholar 

  80. Ma, B.T., Laird, C.: Overview of fatigue behavior in copper single crystals. Acta. Metall. 37, 337 (1989)

    Google Scholar 

  81. French, H.J.: Fatigue and the hardening of steels. Trans. Am. Chem. Soc. Steel Treat. 21, 899 (1933)

    Google Scholar 

  82. Lukas, P., Kunz, L.: Influence of notches on high cycle fatigue life. Mat. Sci. Eng. 47, 93 (1981)

    Google Scholar 

  83. Frost, N.E.: Initiation stress and crack length in mild steel. Proc. Inst. Mech. Eng. 173, 811 (1959)

    Google Scholar 

  84. Frost, N.E.: Stress analysis and growth of cracks. J. Mech. Eng. Sci. 2, 109 (1960)

    Google Scholar 

  85. Frost, N.E.: Alternating stress required to propagate edge cracks in copper and nickelchromium alloy steel plates. J. Mech. Eng. Sci. 5, 15 (1963)

    Google Scholar 

  86. Frost, N.E., Dugdale, D.S.: Fatigue tests on notched mild steel plates with measurements of fatigue cracks. J. Mech. Phys. Solids 5, 182 (1957)

    Google Scholar 

  87. Frost, N.E., Phillips, C.E.: Studies in the formation and propagation of cracks in fatigue specimens. In: Proceedings International Conference on Fatigue of Metals, The Institute of Mechanical Engineers, pp. 520–526, London (1956)

    Google Scholar 

  88. Kobayashi, H., Nakazawa, H.: The effects of notch depth on the initiation, propagation and non-propagation of fatigue cracks. Trans. Jpn. Soc. Mech. Eng. 35, 1856–1863 (1969)

    Article  Google Scholar 

  89. Murakami, Y., Endo, M.: Effects of defects, inclusion and inhomogenities on fatigue strength. Int. J. Fatigue 16(3), 163–182 (1994)

    Article  Google Scholar 

  90. Murakami, Y., Endo, M.: Quantitative evaluation of fatigue strength of metals containing various small defects or cracks. Eng. Fract. Mech. 17(1), 1–15 (1983)

    Article  Google Scholar 

  91. Forsyth, P.J.E.: Fatigue damage and crack growth in aluminium alloys. Acta. Metall. 11, 703–715 (1963)

    Article  Google Scholar 

  92. Clark, W.G. Jr.: How fatigue crack initiation and growth properties affect material selection and design criteria. Met. Eng. Quart. p. 16 (1974)

    Google Scholar 

  93. De los Rios, E.R., Sun, Z.Y., Miller, K.J.: The effect of hydrogen in short fatigue crack growth in an Al-Li Alloy. Fatigue Fract. Eng. Mater. 16(12), 1299–1308 (1993)

    Google Scholar 

  94. Thompson, N., Wadsworth, N.J.: Metal fatigue. Adv. Phys. 7(25), 72 (1958)

    Article  Google Scholar 

  95. Leis, B.J., Ahmad, J., Kanninen, M.F.: Effect of local stress state on the growth of short cracks. Multiaxial Fatigue ASTM-STP 853, 314–339 (1985)

    Article  Google Scholar 

  96. Neumann, P., Tonnessen, A.: Fatigue crack formation in copper. The behaviour of short fatigue cracks, EGF 1, Mechanical Engineering Publications, pp. 41–47 (1986)

    Google Scholar 

  97. Yamada, K., Kim, M.G., Kunio, T.: Tolerant microflaw sizes and non-propagating crack behaviour. The Behaviour of Short Fatigue Cracks, EGF 1, Mechanical Engineering Publications, pp. 261–274 (1986)

    Google Scholar 

  98. Lukas, P., Kunz, L., Weiss, B., Stickler, R.: Non-damaging notches in fatigue. Fatigue Fract. Eng. Mater. Struct. 9, 195–204 (1986)

    Article  Google Scholar 

  99. Miller, K.J.: Initiation and Growth Rates of Short Fatigue Cracks. IUTAM Eshelby Memorial Symposium, Fundamentals of Deformation and Fracture, pp. 477–500 (1985)

    Google Scholar 

  100. Taylor, D., Knott, J.F.: Fatigue crack propagation of short cracks; the effect of microstructure. Fatigue Fract. Eng. Mater. Struct. 4, 147–155 (1981)

    Article  Google Scholar 

  101. De los Rios, E.R., Tang, Z., Miller, K.J.: Short crack fatigue behaviour in a medium carbon steel. Fatigue Fract. Eng. Mater. Struct. 7, 97–108 (1984)

    Google Scholar 

  102. Suh, C.M., Yuuki, R., Kitagawa, H.: Fatigue microcracks in a low carbon steel. Fatigue Fract. Eng. Mater. Struct. 8, 193–203 (1985)

    Article  Google Scholar 

  103. Brown, M.W.: Interference between short, long and non-propagating cracks. In: Miller, J.M., de los Rios, E.R. (eds.): The behaviour of short cracks. EGF 1, Mechanical Engineering Publication, London, pp. 423–439 (1986)

    Google Scholar 

  104. Tokaji, K., Ogawa, T., Osako, S.: The growth of microstructurally small fatigue cracks in a ferritic-pearlitic steel. Fatigue Fract. Eng. Mater. Struct. 11, 331–342 (1988)

    Article  Google Scholar 

  105. Tokaji, K., Ogawa, T.: The growth of microstructurally small fatigue cracks in metals. ESIS 13, Mechanical Engineering Publication, London, pp. 85–99 (1992)

    Google Scholar 

  106. De los Rios, E.R., Navarro, A., Hussain, K.: Microstructural variations in short fatigue cracks. ESIS 13, Mechanical Engineering Publication, London, pp. 115–132 (1992)

    Google Scholar 

  107. Miller, K.J.: Damage in fatigue. A new outlook. PVP Codes and Standards: vol. 1—Current Applications, PVP 313-1. ASME, pp. 191–192 (1995)

    Google Scholar 

  108. Dowling, N.E., Beglet, J.A.: Fatigue crack growth during gross plasticity and the J-integral. ASTM-STP 590, American Society for Testing and Materials, p. 99 (1976)

    Google Scholar 

  109. Hobson, P.D.: The formulation of a crack growth equation for short cracks. Fatigue Eng. Mater. Struct. 5, 323–327 (1982)

    Article  Google Scholar 

  110. Lankford, J.: The growth of small fatigue cracks in 7075–T6 Aluminium alloy. Fatigue Eng. Mater. Struct. 5, 233–248 (1982)

    Article  Google Scholar 

  111. De los Rios E.R., Tang Z., Mille K.J.: Fatigue Engineering and Material Structures 7, pp. 97-108 (1984)

    Google Scholar 

  112. Kitagawa, H., Takahashi, S.: Applicability of fracture mechanics to very small cracks or the cracks in the early stages. In: Proceedings of 2nd International Conference Mechanical Behaviour of Materials, Boston, pp. 627–631 (1976)

    Google Scholar 

  113. Dowling, N.E.: Crack growth during low-cycle fatigue of smooth axial specimens. ASTM STP 637, 97–121 (1977)

    Google Scholar 

  114. Hobson, P.D.: The growth of short fatigue cracks in a medium carbon steel. Ph.D. thesis, University of Sheffield (1985)

    Google Scholar 

  115. Chopra, O.K. et al.: Environmentally Assisted cracking in light water reactors. US NRC NUREG/CR-4667 30, Semiannual Report (2001)

    Google Scholar 

  116. Akiniwa, Y., Tanaka, K., Matsui, E.: Statistical characteristics of propagation of small fatigue cracks in smooth specimens of aluminum alloy 2024–T3. Mater. Sci. Eng. A104, 105–115 (1988)

    Google Scholar 

  117. Blom, A.E, Edlund, A., Zhao, W., Fathalla, A., Weiss, B., Stickler, R.: Short fatigue crack growth in Al 2024 and Al 7475. Symposium on Behaviour of Short Fatigue Cracks, pp. 37–76, EGF 1, Sheffield (1985)

    Google Scholar 

  118. Lankford, J.: The growth of small fatigue cracks in 7075–T6 aluminum. Fatigue Fract. Engr. Mater. Struct. 5, 233–248 (1982)

    Google Scholar 

  119. Lankford, J.: The influence of microstructure on the growth of small fatigue cracks. Fatigue Fract. Eng. Mater. Struct. 8(2), 168 (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pietro Paolo Milella .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Italia

About this chapter

Cite this chapter

Milella, P.P. (2013). Nature and Phenomenology of Fatigue. In: Fatigue and Corrosion in Metals. Springer, Milano. https://doi.org/10.1007/978-88-470-2336-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2336-9_1

  • Published:

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-2335-2

  • Online ISBN: 978-88-470-2336-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics