Nature and Phenomenology of Fatigue

  • Pietro Paolo Milella


For centuries man has been aware that the repeated applications of loads would lead to the early failure of materials. It came as something of a surprise, however, when he also found, more than a century ago, that failure occurred under stresses of low amplitude, lower than the ultimate tensile strength σ u and even of the yield strength σ y of the material. The phenomenon, known as fatigue, has been long studied since there are very few events, other than fatigue, that can cause every year so many failures, sometimes catastrophic also for the casualties involved. This Chapter will address the issue of fatigue from a phenomenological point of view aiming at unfolding why, how and through what successive fundamental steps fatigue is actually developing and eventually destroying the material.


Fatigue Life Crack Growth Rate Strain Amplitude Slip Band Fatigue Limit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Braithwaite, F.: On the fatigue and consequent fracture of metals. Inst. Civ. Eng. Minutes Proc. XIII, 463–474 (1854). (London)Google Scholar
  2. 2.
    Poncelet J.V.: Introduction à la Mécanique Industrielle, Physique ou Expérimentale. Zweite Ausgabe. Paris, Imprimerie de Gauthier-Villars (1939)Google Scholar
  3. 3.
    Albert, W.A.J.: Über Treibseile am Harz. Archiv für Mineralogie. Georgnosie. Bergbau und Hüttenkunde 10, 215–234 (1837)Google Scholar
  4. 4.
    Wöhler, A.: Über die Festigkeits-Versuche mit Eisen und Sthal. Zeitschrift für Bauwesen XX, 73–106 (1870)Google Scholar
  5. 5.
    Gough, H.J.: The Fatigue of Metals. Scott, Greenwood, London (1924)Google Scholar
  6. 6.
    Basquin, O.H.: The exponential low of endurance tests. Proc. Annu. Meet Am. Soc. Test. Mater. 10, 625–630 (1910)Google Scholar
  7. 7.
    Rankine, W.J.M.: On the causes of unexpected breakage of the journals of the railway axles and on the means of preventing such accidents by observing the law of continuity in their construction. Institution of civil engineers, minutes of proceedings vol. 2, pp. 105–108. London (1842)Google Scholar
  8. 8.
    Neuber, H.: Theory of Notch Stresses: Principle for Exact Stress Calculation. J.W. Edwards, Publishers, Incorporated, Ann Arbor, Michigan (1946)Google Scholar
  9. 9.
    Peterson, R.E.: Stress concentration factors. Wiley, New York (1973)Google Scholar
  10. 10.
    Ewing, J.A., Humfrey, J.C.V.: The fracture of metals under repeated alterations of stress. Philos. Trans. R. Soc. 221, 241–253 (1903)Google Scholar
  11. 11.
    Douglas, W.D.: Methods employed at the royal aircraft establishment for the experimental determination of the ultimate strength of aeroplane structures. Advis. Comm. Aero. Rep. Memo 476 (1918)Google Scholar
  12. 12.
    Elber, W.: Fatigue crack propagation: some effects of crack closure on the mechanism of fatigue crack propagation and cyclic tensile loading. Ph.D. thesis, University of New South Wales (1968)Google Scholar
  13. 13.
    Smith, H.R., Piper, D.E., Downey, F.K.: A study of stress corrosion cracking by wedge-force loading. Eng. Fract. Mech. 1, 123–128 (1968)CrossRefGoogle Scholar
  14. 14.
    Keisler, J., Chopra, O.K., Shack, W.J.: Statistical analysis of fatigue strain-life data for carbon and low-alloy steels. US-NRC, NUREG/CR-6237, Argonne Nat. Lab. (1994)Google Scholar
  15. 15.
    Environmentally Assisted Cracking in Light Water Reactors. US NRC, NUREG/CR-4667, Vol. 22, Prepared by O.K. Chopra et al. Semiannual Report (1996)Google Scholar
  16. 16.
    Fatigue Design Handbook. SAE, 2nd Ed., p. 41 (1988)Google Scholar
  17. 17.
    Fuchs, H.O., Stephens, R.I.: Metal Fatigue in Engineering. Wiley, NY (1980)Google Scholar
  18. 18.
    Langraf, R.W.: The resistance of metals to cyclic loading. Achievement of high fatigue resist. Alloys. ASTM-STP 467, 27 (1970)Google Scholar
  19. 19.
    Pardue, T.E., Melcher, J.L., Good, W.B.: Proceeding of society of experimental stress. Analysis 1, 27 (1950)Google Scholar
  20. 20.
    Yokobori T.: Statistical interpretation of the results of testing of materials. J. Phys. Soc. Jpn 6, 81 (1951) Google Scholar
  21. 21.
    Dugdale D.S.: Yielding of steel containing slits. J Mech Phys Solids 7, 135 (1959)Google Scholar
  22. 22.
    Burbach, J.: Zum Zyklischen Verformungsverhalten einiger Technischer Werkstoffe. Technischen Mittelungen Krupp Forschungsberichte 28(2), 55–102 (1970)Google Scholar
  23. 23.
    Feltner, C.E., Laird, C.: Cyclic stress-strain I of FCC metals and alloys. Acta. Metall. 15, 1621–1653 (1967)CrossRefGoogle Scholar
  24. 24.
    Conway, J.B., Stentz, R.H.: Low-cycle and high-cycle fatigue characteristic of forged and cast 304 SS steel at room temperature and 427 °C. ASME MPC Winner Annu. Meet. 25, 59–145 (1984)Google Scholar
  25. 25.
    Lipsitt, H.A., Horne, G.T.: The fatigue behavior of decarburized steels. Proceedings of ASTM 57, 592 (1957)Google Scholar
  26. 26.
    Morrow, J.: Cyclic plastic strain energy and fatigue of metals. Intern. Friction Damping Cyclic Plast ASTM-STP 378, 45 (1965)CrossRefGoogle Scholar
  27. 27.
    Kemsley, D.S.: Internal stresses and fatigue of metals. J Inst. Met 87, 10–15 (1959)Google Scholar
  28. 28.
    Polakowski, N.H.: Restoration of ductility in cold-worked aluminum. Proceedings ASTM 52, 1086 (1952)Google Scholar
  29. 29.
    Laird, C.: The influence of metallurgical structure on the mechanisms of fatigue crack propagation. In: 69th ASTM Annual Meeting, Atlantic City NJ, vol. 32, (1966)Google Scholar
  30. 30.
    Morrow, J.: Cyclic plastic strain energy and fatigue of metals. Am. Soc. Test. Mater. STP-378, 45–87 (1965)Google Scholar
  31. 31.
    Landgraf, R.W., Morrow, J.D., Endo, T.: Determination of the cyclic stress–strain curve. J. Mater. JMLSA 4(1), 176–188 (1969)Google Scholar
  32. 32.
    Feltner, C.E., Mitchell, M.R.: 2BASIC Research on the cyclic deformation and fracture behaviour of materials. Manual Low-Cycle Fatigue Test. Am. Soc. Test. Mater. STP 465, 27–66 (1969)Google Scholar
  33. 33.
    Landgraf, R.W.: Cyclic Deformation and Fracture of Hardened Steels. In: International Conference on Mechanical Behavior of Materials, Kyoto, Japan (1972)Google Scholar
  34. 34.
    Maier, H.J., Donth, B., Bayerlein, M., Mughrabi, H., Meier, B., Kesten, M., Metallkde, Z.:Low-Temperature fatigue induced martensitic transplantation on the low-cycle fatigue behaviour of stainless steel. 84, 820–843 (1972)Google Scholar
  35. 35.
    Clark, J.B., McEvily, A.J.: Interaction of dislocation structures in cyclically strained aluminum alloys. Acta Metall. 12(1359) (1964) Google Scholar
  36. 36.
    Calabrese, C., Laird, C.: C. Stress-strain response of two-phase alloys. Part I. Mater. Sci. Eng 13, 141–150 (1974)Google Scholar
  37. 37.
    Calabrese, C., Laird, C.: C. Stress-strain response of two-phase alloys. Part II. Mater. Sci. Eng. 13, 149–170 (1974)Google Scholar
  38. 38.
    Duva, J.M., Daeubler, M.A., Starke, E.A. Jr., Luetjering,G.: Large shearable particles lead to coarse slip in particle reinforced alloys. Acta Metallurgica 36(3), 585 (1988)Google Scholar
  39. 39.
    Baxter, W.J., McKinney, T.R.: Growth of slip bauds during fatigue of 6061–T6 aluminum. Metall. Trans. 19A, 83 (1988)Google Scholar
  40. 40.
    Metals Handbook, Properties and Selection. ASM 1, 8th Edition, p. 223 (1975) Google Scholar
  41. 41.
    Smith, R.W., Hirschberg, M.H., Manson, S.S.: Fatigue behaviour of materials under strain cycling in low and intermediate range. NASA TN D-1574 (1963)Google Scholar
  42. 42.
    Manson, S.S., Hirschberg, M.H.: Fatigue: an interdisciplinary approach. Syracuse University Press, Syracuse NY, p. 133 (1964)Google Scholar
  43. 43.
    Gough, H.J.: The Fatigue of Metals. Ernest Benn Ltd, London (1926)Google Scholar
  44. 44.
    Forrest, P.G.: International Conference on Fatigue, Institution of Mechanical Engineers, p. 171. (1956)Google Scholar
  45. 45.
    Roberts, E., Honeycombe, R.W.K.: The plastic deformation of metals. J. Inst. Metals 91, 134 (1962–196263)Google Scholar
  46. 46.
    Haigh, B.P.: Trans. Farady Soc 24, 125 (1928)Google Scholar
  47. 47.
    Kocanda, S.: Fatigue Failure of Metals. Sijthoff & Noordhoff Int Pubs, Alphena/d Rijd (1978)CrossRefGoogle Scholar
  48. 48.
    Alden, T.H., Backofen, W.A.: Acta Metallurgica 9, 352 (1961)Google Scholar
  49. 49.
    Ewing, J.A., Humphrey, J.C.: The fracture of metals under repeated alternation of stress. Philos. Trans. R. Soc. A 200, 241–250 (1903)CrossRefGoogle Scholar
  50. 50.
    Hempel, M.R.: Fracture, p. 376. Wiley, New York (1959)Google Scholar
  51. 51.
    Polak, J.: Cyclic plasticity and low-cycle fatigue life of metals. Elsevier, Amsterdam (1991)Google Scholar
  52. 52.
    Thompson, N., Wadsworth, N.J., Louat, N.: Philos. Mag. 1(113) (1956)Google Scholar
  53. 53.
    Forsyth, P.J.E.: Crack Propagation Symposium. Cranfield (1961)Google Scholar
  54. 54.
    Smith, G.C.: Proc. R. Soc. A 242, (189) (1957)Google Scholar
  55. 55.
    Jaquet, P.A.: International Conference on Fatigue of Metals, Institute of Mechanical Engineers. ASME, London (1956)Google Scholar
  56. 56.
    Forsyth, P.J.E, Stubbington, C.A.: Nature 175, 767 (1955)Google Scholar
  57. 57.
    Mughrabi, H., Ackermann, F., Herz, K.: American Society for Testing and Materials, STP 675, 69 (1979)Google Scholar
  58. 58.
    Lukáš, P.: Fatigue crack nucleation and microstructure. ASM Handb. Fatigue Fract. 19 (1997)Google Scholar
  59. 59.
    Lawrence, F.V., Jones, R.C.: Mechanisms of fatigue crack initiation and growth. Metal Trans. 1, 367–393 (1970)CrossRefGoogle Scholar
  60. 60.
    Hempel, M.R.: International Conference on Fatigue, Institution of Mechanical Engineers, p. 543 (1956)Google Scholar
  61. 61.
    Hempel, M.R.: Fatigue in Aircraft Structure, Columbia University. Academic, New York, p. 83 (1956)Google Scholar
  62. 62.
    Carstensen, J.V.: Structural Evolution and Mechanisms of Fatigue in Polycrystalline Brass. Risø R-1500(EN), Risø National Laboratory, Roskilde (1998)Google Scholar
  63. 63.
    Forrest, P.G., Tate, A.E.L.: The influence of grain size on the fatigue behaviour of 70/30 Brass. J. Inst. Met. 93, 38 (1964–1965)Google Scholar
  64. 64.
    Sinclair, G.M., Craig, W.J.: Influence of grain size on work hardening and fatigue characteristics of alpha brass. ASM Trans. 44, 929–948 (1952)Google Scholar
  65. 65.
    Kunio, T, Shimizu, M., Yamada, K.: Microstructural aspects of fatigue behaviour of rapid-heat-treated steels. In: Proceedings of 2nd International Conference on Fracture. Chapman and Hall, pp. 630–642 (1969)Google Scholar
  66. 66.
    Kunio, T., Yamada, K.: Microstructural aspects of threshold condition for non-propagating fatigue cracks in martensitic-ferritic structures. Fatigue Mech. ASTM STP 675, 342–370 (1979)CrossRefGoogle Scholar
  67. 67.
    Klesnil, M., Holzmann, M., Lukáš, P., Ryš, P.: Some aspects of the fatigue behaviour of rapid-heat-treated steel. J. Iron Steel Inst. 203, 47 (1965)Google Scholar
  68. 68.
    Taira, S., Tanaka, T., Hoshina, M.: Grain size effect on crack nucleation and growth in long life fatigue of low-carbon steel. Fatigue mechanism. American Society for Testing and Materials ASTM STP 675, pp. 135–173 (1979)Google Scholar
  69. 69.
    Murakami, Y., Matsuda, K.: Poc. Fatifue’87. In: Ravichandram, K.S., Ritchie, R.O., Murakami, Y. (eds.) Small Fatigue Cracks, vol. 1, EMAS, 333–342 (1987)Google Scholar
  70. 70.
    Nisitani, H.: Behavior so small cracks in fatigue and relating phenomena. The Society of Materials Science, Japan. Current Research in Fatigue Cracks 1, pp. 1–26, Elsevier (1987)Google Scholar
  71. 71.
    Kitagawa, H., Takahashi, S.: Proceedings Second International Conference on Mechanical Behavior of Materials. ASM, p. 627 (1976)Google Scholar
  72. 72.
    Lukáš, P., Kunz, L., Weiss, B., Stickler, R.: Notch size effect in fatigue. Fatigue Fract. Eng. Mater. Struct. 12(3), 175–186 (1989)CrossRefGoogle Scholar
  73. 73.
    Hempel, M.: Fatigue of Aircraft Structures. Ed. Freudenthal. Academic, New York (1956)Google Scholar
  74. 74.
    Kunio, T., Shimuzu, M., Yamada, K., Tamura, M.: In: Fatigue’84, Beevers, C.J. (ed.) EMAS, Warley, p. 817 (1984)Google Scholar
  75. 75.
    Miller, K.J.: Fatigue fracture of engineering. Mater. Struct. 10, 93 (1987)CrossRefGoogle Scholar
  76. 76.
    Perez Carbonell, E., Brown, M.W.: A study of short crack growth in torsional low cycle fatigue for a medium carbon steel. Eng. Mater. Struct. 9, 15–33 (1986)Google Scholar
  77. 77.
    Lukáš, P.J., Kunz, L.: Short Fatigue cracks. ESIS 13. In: Miller, K.J., De los Rios, E.R.: Mechanical Engineering Publications, London p. 265, (1992)Google Scholar
  78. 78.
    Fine, M.E., Kwon, I.B.: Fatigue crack initiation along slip bands. The behaviour of short fatigue cracks. EGF 1, Mechanical Engineering Publications, pp. 29–40 (1986)Google Scholar
  79. 79.
    Vašek, A., PolákJ.: Low cycle fatigue damage accumulation in Armco-iron. Kovové Materiály 29, 113 (1991)Google Scholar
  80. 80.
    Ma, B.T., Laird, C.: Overview of fatigue behavior in copper single crystals. Acta. Metall. 37, 337 (1989)Google Scholar
  81. 81.
    French, H.J.: Fatigue and the hardening of steels. Trans. Am. Chem. Soc. Steel Treat. 21, 899 (1933)Google Scholar
  82. 82.
    Lukas, P., Kunz, L.: Influence of notches on high cycle fatigue life. Mat. Sci. Eng. 47, 93 (1981)Google Scholar
  83. 83.
    Frost, N.E.: Initiation stress and crack length in mild steel. Proc. Inst. Mech. Eng. 173, 811 (1959)Google Scholar
  84. 84.
    Frost, N.E.: Stress analysis and growth of cracks. J. Mech. Eng. Sci. 2, 109 (1960)Google Scholar
  85. 85.
    Frost, N.E.: Alternating stress required to propagate edge cracks in copper and nickelchromium alloy steel plates. J. Mech. Eng. Sci. 5, 15 (1963)Google Scholar
  86. 86.
    Frost, N.E., Dugdale, D.S.: Fatigue tests on notched mild steel plates with measurements of fatigue cracks. J. Mech. Phys. Solids 5, 182 (1957)Google Scholar
  87. 87.
    Frost, N.E., Phillips, C.E.: Studies in the formation and propagation of cracks in fatigue specimens. In: Proceedings International Conference on Fatigue of Metals, The Institute of Mechanical Engineers, pp. 520–526, London (1956)Google Scholar
  88. 88.
    Kobayashi, H., Nakazawa, H.: The effects of notch depth on the initiation, propagation and non-propagation of fatigue cracks. Trans. Jpn. Soc. Mech. Eng. 35, 1856–1863 (1969)CrossRefGoogle Scholar
  89. 89.
    Murakami, Y., Endo, M.: Effects of defects, inclusion and inhomogenities on fatigue strength. Int. J. Fatigue 16(3), 163–182 (1994)CrossRefGoogle Scholar
  90. 90.
    Murakami, Y., Endo, M.: Quantitative evaluation of fatigue strength of metals containing various small defects or cracks. Eng. Fract. Mech. 17(1), 1–15 (1983)CrossRefGoogle Scholar
  91. 91.
    Forsyth, P.J.E.: Fatigue damage and crack growth in aluminium alloys. Acta. Metall. 11, 703–715 (1963)CrossRefGoogle Scholar
  92. 92.
    Clark, W.G. Jr.: How fatigue crack initiation and growth properties affect material selection and design criteria. Met. Eng. Quart. p. 16 (1974)Google Scholar
  93. 93.
    De los Rios, E.R., Sun, Z.Y., Miller, K.J.: The effect of hydrogen in short fatigue crack growth in an Al-Li Alloy. Fatigue Fract. Eng. Mater. 16(12), 1299–1308 (1993)Google Scholar
  94. 94.
    Thompson, N., Wadsworth, N.J.: Metal fatigue. Adv. Phys. 7(25), 72 (1958)CrossRefGoogle Scholar
  95. 95.
    Leis, B.J., Ahmad, J., Kanninen, M.F.: Effect of local stress state on the growth of short cracks. Multiaxial Fatigue ASTM-STP 853, 314–339 (1985)CrossRefGoogle Scholar
  96. 96.
    Neumann, P., Tonnessen, A.: Fatigue crack formation in copper. The behaviour of short fatigue cracks, EGF 1, Mechanical Engineering Publications, pp. 41–47 (1986)Google Scholar
  97. 97.
    Yamada, K., Kim, M.G., Kunio, T.: Tolerant microflaw sizes and non-propagating crack behaviour. The Behaviour of Short Fatigue Cracks, EGF 1, Mechanical Engineering Publications, pp. 261–274 (1986)Google Scholar
  98. 98.
    Lukas, P., Kunz, L., Weiss, B., Stickler, R.: Non-damaging notches in fatigue. Fatigue Fract. Eng. Mater. Struct. 9, 195–204 (1986)CrossRefGoogle Scholar
  99. 99.
    Miller, K.J.: Initiation and Growth Rates of Short Fatigue Cracks. IUTAM Eshelby Memorial Symposium, Fundamentals of Deformation and Fracture, pp. 477–500 (1985)Google Scholar
  100. 100.
    Taylor, D., Knott, J.F.: Fatigue crack propagation of short cracks; the effect of microstructure. Fatigue Fract. Eng. Mater. Struct. 4, 147–155 (1981)CrossRefGoogle Scholar
  101. 101.
    De los Rios, E.R., Tang, Z., Miller, K.J.: Short crack fatigue behaviour in a medium carbon steel. Fatigue Fract. Eng. Mater. Struct. 7, 97–108 (1984)Google Scholar
  102. 102.
    Suh, C.M., Yuuki, R., Kitagawa, H.: Fatigue microcracks in a low carbon steel. Fatigue Fract. Eng. Mater. Struct. 8, 193–203 (1985)CrossRefGoogle Scholar
  103. 103.
    Brown, M.W.: Interference between short, long and non-propagating cracks. In: Miller, J.M., de los Rios, E.R. (eds.): The behaviour of short cracks. EGF 1, Mechanical Engineering Publication, London, pp. 423–439 (1986)Google Scholar
  104. 104.
    Tokaji, K., Ogawa, T., Osako, S.: The growth of microstructurally small fatigue cracks in a ferritic-pearlitic steel. Fatigue Fract. Eng. Mater. Struct. 11, 331–342 (1988)CrossRefGoogle Scholar
  105. 105.
    Tokaji, K., Ogawa, T.: The growth of microstructurally small fatigue cracks in metals. ESIS 13, Mechanical Engineering Publication, London, pp. 85–99 (1992)Google Scholar
  106. 106.
    De los Rios, E.R., Navarro, A., Hussain, K.: Microstructural variations in short fatigue cracks. ESIS 13, Mechanical Engineering Publication, London, pp. 115–132 (1992)Google Scholar
  107. 107.
    Miller, K.J.: Damage in fatigue. A new outlook. PVP Codes and Standards: vol. 1—Current Applications, PVP 313-1. ASME, pp. 191–192 (1995)Google Scholar
  108. 108.
    Dowling, N.E., Beglet, J.A.: Fatigue crack growth during gross plasticity and the J-integral. ASTM-STP 590, American Society for Testing and Materials, p. 99 (1976)Google Scholar
  109. 109.
    Hobson, P.D.: The formulation of a crack growth equation for short cracks. Fatigue Eng. Mater. Struct. 5, 323–327 (1982)CrossRefGoogle Scholar
  110. 110.
    Lankford, J.: The growth of small fatigue cracks in 7075–T6 Aluminium alloy. Fatigue Eng. Mater. Struct. 5, 233–248 (1982)CrossRefGoogle Scholar
  111. 111.
    De los Rios E.R., Tang Z., Mille K.J.: Fatigue Engineering and Material Structures 7, pp. 97-108 (1984)Google Scholar
  112. 112.
    Kitagawa, H., Takahashi, S.: Applicability of fracture mechanics to very small cracks or the cracks in the early stages. In: Proceedings of 2nd International Conference Mechanical Behaviour of Materials, Boston, pp. 627–631 (1976)Google Scholar
  113. 113.
    Dowling, N.E.: Crack growth during low-cycle fatigue of smooth axial specimens. ASTM STP 637, 97–121 (1977)Google Scholar
  114. 114.
    Hobson, P.D.: The growth of short fatigue cracks in a medium carbon steel. Ph.D. thesis, University of Sheffield (1985)Google Scholar
  115. 115.
    Chopra, O.K. et al.: Environmentally Assisted cracking in light water reactors. US NRC NUREG/CR-4667 30, Semiannual Report (2001)Google Scholar
  116. 116.
    Akiniwa, Y., Tanaka, K., Matsui, E.: Statistical characteristics of propagation of small fatigue cracks in smooth specimens of aluminum alloy 2024–T3. Mater. Sci. Eng. A104, 105–115 (1988)Google Scholar
  117. 117.
    Blom, A.E, Edlund, A., Zhao, W., Fathalla, A., Weiss, B., Stickler, R.: Short fatigue crack growth in Al 2024 and Al 7475. Symposium on Behaviour of Short Fatigue Cracks, pp. 37–76, EGF 1, Sheffield (1985)Google Scholar
  118. 118.
    Lankford, J.: The growth of small fatigue cracks in 7075–T6 aluminum. Fatigue Fract. Engr. Mater. Struct. 5, 233–248 (1982)Google Scholar
  119. 119.
    Lankford, J.: The influence of microstructure on the growth of small fatigue cracks. Fatigue Fract. Eng. Mater. Struct. 8(2), 168 (1985)Google Scholar

Copyright information

© Springer-Verlag Italia 2013

Authors and Affiliations

  1. 1.Department of Civil and Mechanical EngineeringUniversity of Cassino ItalyCassinoItaly

Personalised recommendations