Role of Molecular Biology in the Prediction of Response to Neoadjuvant Treatment

  • Milena Gusella
  • Felice Pasini
  • Giovanni de Manzoni
Part of the Updates in Surgery book series (UPDATESSURG)


In esophageal cancer, molecular markers representing tumor biological properties or patient features could provide significant determinants for predicting therapeutic response. To date, however, there is no sufficient evidence that current diagnostic methods can be used to improve the efficacy of multimodality neoadjuvant therapies. Molecular research in esophageal cancer has focused on two principal categories: (1) mRNA from cancer biopsies, searching for a relationship between outcome and the different gene expression levels; (2) DNA from healthy tissues, searching for associations between outcome and constitutive inter-individual genetic variations. This second option is a very attractive one, in that a small volume of peripheral blood is sufficient to obtain genomic DNA from lymphocytes-monocytes.


Esophageal Cancer Esophageal Squamous Cell Carcinoma Esophageal Carcinoma Esophageal Squamous Cell Carcinoma Patient Cancer Biopsy 


  1. 1.
    Luthra R, Wu T, Luthra MG et al (2006) Gene expression profiling of localized esophageal carcinomas: association with pathologic response to preoperative chemoradiation. J Clin Oncol 24:259–267PubMedCrossRefGoogle Scholar
  2. 2.
    Luthra MG, Ajani JA, Izzo J et al (2007) Decreased expression of gene cluster at chromosome1q21 defines molecular subgroups of chemoradiotherapy response in esophageal cancers. Clin Cancer Res 13:912–919PubMedCrossRefGoogle Scholar
  3. 3.
    Duong C, Greenawalt DM, Kowalczyk A et al (2007) Pretreatment gene expression profiles can be used to predict response to neoadjuvant chemoradiotherapy in esophageal cancer. Ann Surg Oncol 14:3602–3609PubMedCrossRefGoogle Scholar
  4. 4.
    Maher SG, Gillham CM, Duggan SP et al (2009) Gene expression analysis of diagnostic biopsies predicts pathological response to neoadjuvant chemoradiotherapy of esophageal cancer. Ann Surg 250:729–737PubMedCrossRefGoogle Scholar
  5. 5.
    Warnecke-Eberz U, Metzger R, Bollschweiler E et al (2010) TaqMan low-density arrays and analysis by artificial neuronal networks predict response to neoadjuvant chemoradiation in esophageal cancer. Pharmacogenomics 11:55–64PubMedCrossRefGoogle Scholar
  6. 6.
    Metzger R, Heukamp L, Drebber U et al (2010) CUL2 and STK11 as novel response-predictive genes for neoadjuvant radiochemotherapy in esophageal cancer. Pharmacogenomics 11:1105–1113PubMedCrossRefGoogle Scholar
  7. 7.
    Kim SM, Park YY, Park ES et al (2010) Prognostic biomarkers for esophageal adenocarcinoma identified by analysis of tumor transcriptome. PLoS One 5:e15074PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Warnecke-Eberz U, Vallböhmer D, Alakus H et al (2009) ERCC1 and XRCC1 gene polymorphisms predict response to neoadjuvant radiochemotherapy in esophageal cancer. J Gastrointest Surg 13:1411–1421PubMedCrossRefGoogle Scholar
  9. 9.
    Wu X, Gu J, Wu TT et al (2006) Genetic variations in radiation and chemotherapy drug action pathways predict clinical outcomes in esophageal cancer. J Clin Oncol 24:3789–3798PubMedCrossRefGoogle Scholar
  10. 10.
    Gusella M, de Manzoni G, Marinelli R et al (2009) XPA and XRCC3 gene polymorphisms predict survival in esophageal cancer patients receiving neo-adjuvant radio-chemotherapy with cisplatin (CDDP), docetaxel (DTX) and 5-fluorouracil (FU). J Clin Oncol 27:e14571Google Scholar
  11. 11.
    Okuno T, Tamura T, Yamamori M et al (2007) Favorable genetic polymorphisms predictive of clinical outcome of chemoradiotherapy for stage II/III esophageal squamous cell carcinoma in Japanese. Am J Clin Oncol 30:252–257PubMedCrossRefGoogle Scholar
  12. 12.
    Liao Z, Liu H, Swisher SG et al (2006) Polymorphism at the 3′-UTR of the thymidylate synthase gene: a potential predictor for outcomes in Caucasian patients with esophageal adenocarcinoma treated with preoperative chemoradiation. Int J Radiat Oncol Biol Phys 64:700–708PubMedCrossRefGoogle Scholar
  13. 13.
    Sarbia M, Stahl M, von Weyhern C et al (2006) The prognostic significance of genetic polymorphisms (Methylenetetrahydrofolate Reductase C677T, Methionine Synthase A2756G, Thymidilate Synthase tandem repeat polymorphism) in multimodally treated oesophageal squamous cell carcinoma. Br J Cancer 94:203–207PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Jain M, Kumar S, Upadhyay R et al (2007) Influence of apoptosis (BCL2, FAS), cell cycle (CCND1) and growth factor (EGF, EGFR) genetic polymorphisms on survival outcome: an exploratory study in squamous cell esophageal cancer. Cancer Biol Ther 6:1553–1558PubMedCrossRefGoogle Scholar
  15. 15.
    Jatoi A, Martenson JA, Foster NR et al (2007) Paclitaxel, carboplatin, 5-fluorouracil, and radiation for locally advanced esophageal cancer: phase II results of preliminary pharmacologic and molecular efforts to mitigate toxicity and predict outcomes: North Central Cancer Treatment Group (N0044). Am J Clin Oncol. 30:507–513PubMedCrossRefGoogle Scholar
  16. 16.
    Lanuti M, Liu G, Goodwin JM et al (2008) A functional epidermal growth factor (EGF) polymorphism, EGF serum levels, and esophageal adenocarcinoma risk and outcome. Clin Cancer Res 14:3216–3222PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Alakus H, Warnecke-Eberz U, Bollschweiler E et al (2009) GNAS1 T393C polymorphism is associated with histopathological response to neoadjuvant radiochemotherapy in esophageal cancer. Pharmacogenomics J 9:202–207PubMedCrossRefGoogle Scholar
  18. 18.
    Bachmann K, Shahmiri S, Kaifi J et al (2009) Polymorphism Arg290Arg in esophageal-cancer-related gene 1 (ECRG1) is a prognostic factor for survival in esophageal cancer. J Gastrointest Surg 13:181–187PubMedCrossRefGoogle Scholar
  19. 19.
    Bradbury PA, Zhai R, Ma C et al (2009) Vascular endothelial growth factor polymorphisms and esophageal cancer prognosis. Clin Cancer Res 15:4680–4685PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Bradbury PA, Kulke MH, Heist RS et al (2009) Cisplatin pharmacogenetics, DNA repair polymorphisms, and esophageal cancer outcomes. Pharmacogenet Genomics 19:613–625PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Bradbury PA, Zhai R, Hopkins J et al (2009) Matrix metalloproteinase 1, 3 and 12 polymorphisms and esophageal adenocarcinoma risk and prognosis. Carcinogenesis. 30:793–798PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Cescon DW, Bradbury PA, Asomaning K et al (2009) p53 Arg72Pro and MDM2 T309G polymorphisms, histology, and esophageal cancer prognosis. Clin Cancer Res 15:3103–109PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Hildebrandt MA, Yang H, Hung MC et al (2009) Genetic variations in the PI3K/PTEN/AKT/mTOR pathway are associated with clinical outcomes in esophageal cancer patients treated with chemoradiotherapy. J Clin Oncol. 27:857–871PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Narumiya K, Metzger R, Bollschweiler E et al (2011) Impact of ABCB1 C3435T polymorphism on lymph node regression in multimodality treatment of locally advanced esophageal cancer. Pharmacogenomics 12:205–214PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2012

Authors and Affiliations

  • Milena Gusella
    • 1
  • Felice Pasini
  • Giovanni de Manzoni
  1. 1.Dept. of Medical Oncology“Santa Maria della Misericordia” HospitalRovigoItaly

Personalised recommendations