Summary of Quantum and Statistical Mechanics

  • Michele Cini
  • Francesco Fucito
  • Mauro Sbragaglia
Part of the UNITEXT book series (UNITEXT)


In Quantum Mechanics, the state of a particle in one dimension and in presence of a potential U(x,t), is entirely described by a complex wave function ψ(x,t) obeying the time dependent Schrödinger equation
$$i\hbar \frac{{\partial \psi \left( {x,t} \right)}}{{\partial t}} = - \frac{{{\hbar ^2}}}{{2m}}\frac{{{\partial ^2}\psi \left( {x,t} \right)}}{{\partial {x^2}}} + U\left( {x,t} \right)\psi \left( {x,t} \right)$$
where m is the mass of the particle and ħ is the Planck constant, h, divided by 2π.


Wave Function Angular Momentum Discrete Spectrum Hypergeometric Series Grand Canonical Ensemble 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    G.F. Carrier, M. Krook and C.E. Pearson, Functions of a Complex Variable: Theory and Technique (SIAM, New York, 2005)MATHCrossRefGoogle Scholar
  2. 2.
    K. Huang, Statistical Mechanics (John Wiley, New York, 1987)MATHGoogle Scholar
  3. 3.
    J.W. Gibbs, Elementary Principles in Statistical Mechanics (Yale University Press, New haven, 1902); Reprinted by Dover Publications, New York (1960)MATHGoogle Scholar
  4. 4.
    L.D. Landau and E.M. Lifshitz, Statistical Physics (Pergamon Press, Oxford, 1958)MATHGoogle Scholar
  5. 5.
    L.D. Landau and E.M. Lifshitz, Quantum Mechanics: Nonrelativistic theory (Pergamon Press, Oxford, 1958)Google Scholar
  6. 6.
    J.J. Sakurai, Modern Quantum Mechanics (Addison-Wesley, Redwood City, CA, 1985)Google Scholar
  7. 7.
    R.K. Pathria, Statistical Mechanics (Pergamon Press, Oxford, 1972)Google Scholar
  8. 8.
    I. Romanovic Prigogine, Introduction to Thermodynamics of Irreversible Processes (John Wiley, New York, 1967)Google Scholar
  9. 9.
    R. Kubo, Statistical Mechanics (Interscience Publishers, New York, 1965)MATHGoogle Scholar

Copyright information

© Springer-Verlag Italia 2012

Authors and Affiliations

  • Michele Cini
    • 1
    • 2
  • Francesco Fucito
    • 1
    • 2
  • Mauro Sbragaglia
    • 1
    • 2
  1. 1.Department of PhysicsUniversity of RomeTor VergataItaly
  2. 2.Laboratori Nazionali FrascatiINFNItaly

Personalised recommendations