Advertisement

Improving Ventilation by Reaeration of Atelectatic Regions with Perfluorocarbons

  • S. Böhm
  • A. Fraterman
  • B. Lachmann
Conference paper

Abstract

Patients with acute respiratory failure have a disturbed pulmonary surfactant system which causes an elevated surface tension at the air-tissue interface of the alveoli in the lung. This elevated surface tension leads to end-expiratory alveolar collapse, to atelectasis, to an increase in right-to-left shunt, and to a decrease in PaO2. Therefore, in these patients it is essential to apply a ventilatory treatment that is aimed at recruiting those collapsed alveoli and improving gas-exchange at the lowest possible airway pressures.

Keywords

Acute Lung Injury Acute Respiratory Failure Conventional Mechanical Ventilation Exogenous Surfactant Partial Liquid Ventilation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Von Neergaard K (1929) Neue Auffassungen über einen Grundbegriff der Atemmechanik. Die Retraktionskraft der Lunge, abhängig von der Oberflächenspannung in den Alveolen. Z Ges Exp Med 66:373–394CrossRefGoogle Scholar
  2. 2.
    Faithfull NS (1994) Mechanisms and efficacy of fluorochemical oxygen transport and delivery. Artif Cells Blood Substit Immobil Biotechnol 22(2):181–197PubMedCrossRefGoogle Scholar
  3. 3.
    Shaffer TH, Wolfson MR, Greenspan J et al (1994) Perfluorochemical liquids as a respiratory medium. Artif Cells Blood Substit Immobi Biotechnol 22(2):315–326CrossRefGoogle Scholar
  4. 4.
    Fuhrman BP, Paczan PR, DeFrancis M (1991) Perfluorocarbon-associated gas exchange. Crit Care Med 19:712–722PubMedCrossRefGoogle Scholar
  5. 5.
    Tütüncü AS, Lachmann B (1994) Perfluorocarbons as an alternative respiratory medium. In: Vincent JL (ed) Update in Intensive Care and Emergency Medicine, vol 18. Springer, Berlin Heidelberg New York, pp 549–563Google Scholar
  6. 6.
    Lachmann B, Verbrugge S (1996) Liquid ventilation. Current Opinion in Crit Care 2:60–66CrossRefGoogle Scholar
  7. 7.
    Lachmann B, Fraterman A,Verbrugge S (in press) Liquid ventilation. In: Marini JJ, Slutsky AS (eds) Physiological basis of ventilatory support. Marcel Dekker, inc., New York Basel Hong KongGoogle Scholar
  8. 8.
    Hernan LJ, Fuhrman BP, Papo MC et al (1995) Cardiorespiratory effects of perfluorocarbon associated gas exchange at reduced oxygen concentrations. Crit Care Med 23:553–559PubMedCrossRefGoogle Scholar
  9. 9.
    Tütüncü AS, Faithfull NS, Lachmann B (1993) Intratracheal perfluorocarbon administration combined with artificial ventilation in experimental respiratory distress syndrome: dose dependent improvement of gas exchange. Crit Care Med 21:962–969PubMedCrossRefGoogle Scholar
  10. 10.
    Tütüncü AS, Faithfull NS, Lachmann B (1993) Comparison of ventilatory support with intratracheal perfluorocarbon administration and conventional mechanical ventilation in animals with acute respiratory failure. Am Rev Resp Dis 148:785–792PubMedCrossRefGoogle Scholar
  11. 11.
    Tütüncü AS, Akpir K, Mulder P et al (1993) Intratracheal perfluorocarbon administration as an aid in the ventilatory management of respiratory distress syndrome. Anesthesiology 79: 1083–1093PubMedCrossRefGoogle Scholar
  12. 12.
    Houmes RJM, Verbrugge S, Hendrik ER et al (1995) Hemodynamic effects of partial liquid ventilation with perflubron in acute lung injury. Intens Care Med 21:966–972CrossRefGoogle Scholar
  13. 13.
    Hernan LJ, Fuhrman BP, Kaiser RE Jr et al (1996) Perfluorcarbon-associated gas exchange in normal and acid-injured large sheep. Crit Care Med 24:475–481PubMedCrossRefGoogle Scholar
  14. 14.
    Nesti FD, Fuhrman BP, Steinhorn DM et al (1994) Perfluorocarbon-associated gas exchange in gastric aspiration. Crit Care Med 22:1445–1452PubMedCrossRefGoogle Scholar
  15. 15.
    Hirschl RB, Tooley R, Parent AC et al (1995) Improvement of gas exchange, pulmonary function, and lung injury with partial liquid ventilation: A study model in a setting of severe respiratory failure. Chest 108:500–508PubMedCrossRefGoogle Scholar
  16. 16.
    Papo MC, Paczan PR, Furman BP et al (1996) Perfluorocarbon-associated gas exchange improves oxygenation, lung mechanics, and survival in a model of adult respiratory distress syndrome. Crit Care Med 24:466–474PubMedCrossRefGoogle Scholar
  17. 17.
    Kazerooni EA, Pranikoff MD, Cascade PN et al (1996) Partial liquid ventilation with perflubron during extracorporeal life support in adults: radiographic appearance. Radiology 198:137–142PubMedGoogle Scholar
  18. 18.
    Salman NH, Fuhrman BP, Steinhorn DM et al (1995) Prolonged studies of perfluorocarbon associated gas exchange and of the resumption of conventional mechanical ventilation. Crit Care Med 23:919–924PubMedCrossRefGoogle Scholar
  19. 19.
    Tütüncü AS, Lachmann B (1995) Effects of partial liquid ventilation on gas exchange and lung mechanics in healthy animals. Appl Cardiopulm Pathophys 5(4):195–199Google Scholar
  20. 20.
    Tooley R, Hirschl RB, Parent A et al (1996) Total liquid ventilation with perfluorocarbons increases pulmonary end-expiratory volume and compliance in the setting of lung atelectasis. Crit Care Med 24:268–273PubMedCrossRefGoogle Scholar
  21. 21.
    Tarczy-Hornoch P, Hildebrandt J, Mates EA et al (1996) Effects of exogenous surfactant on lung pressure-volume characteristics during liquid ventilation. J Appl Physiol 80(5): 1764–1771PubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia 1997

Authors and Affiliations

  • S. Böhm
  • A. Fraterman
  • B. Lachmann

There are no affiliations available

Personalised recommendations