Advertisement

Pulmonary Dysfunction after Ischemia — Reperfusion

  • J. O. C. AulerJr.
Conference paper

Abstract

Ischemia reperfusion injury comprehends a systemic response that may lead to many clinical disorders including acute respiratory distress syndrome (ARDS) and multiple organ system failure syndrome [1]. It may occur during resuscitation in hemorrhagic shock, after trauma, vascular surgery, following cardiopulmonary bypass, transplantation procedures and thrombolitic therapy for myocardial infarction or pulmonary embolism [2]. The functional integrity of the endothelium is consequently an important determinant of normal vascular responsiveness and nutritional flow regulation to the tissues. The impairment of pulmonary-endothelium-dependent relaxation, and consequently of ischemia-reperfusion injury may be responsible for the pulmonary vasomotor deregulation and oxygenation disturbances that accompany ARDS patients. Understanding the biophysiology of endothelial cells of pulmonary vascular territory is of paramount importance to understand the pathophysiology and treatment of ARDS. The technological advances in cellular and molecular biology allow us to clarify many points involved with the ischemia-reperfusion injury syndrome. One of the most useful tools in clarifying the role of the lungs in the processing of bioactive substances is the ability to isolate, characterize and cultivate endothelial cells [3].

Keywords

Nitric Oxide Nitric Oxide Pulmonary Hypertension Acute Lung Injury Acute Respiratory Distress Syndrome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Faist E, Baue AE, Dittmer H et al (1983) Multiple organ failure in polytrauma patients. J Trauma 23:775–787PubMedCrossRefGoogle Scholar
  2. 2.
    Westaby S (1987) Organ dysfunction after cardiopulmonary bypass. A systemic inflammatory reaction initiated by the extracorporeal circuit. Intensive Care Med 13:89–95PubMedCrossRefGoogle Scholar
  3. 3.
    Ryan US (1986) Pulmonary endothelium: A dynamic interface. Clin In Med 9:124–132Google Scholar
  4. 4.
    Adnot S, Raffestin B, Eddahibi S et al (1991) Loss of endothelium-dependent relaxant activity in the pulmonary circulation of rats exposed to chronic hypoxia. J Clin Invest 87:155–162PubMedCrossRefGoogle Scholar
  5. 5.
    Won J, Vanderford PA, Fineman JR et al (1993) Endothelin-1 produces pulmonary vasodilatation in the intact newborn lamb. Am J Physiol 1318–1325Google Scholar
  6. 6.
    Vane JR, Anggard EE, Botting R (1990) Regulatory functions of the vascular endothelium. N Engl J Med 323:27–36PubMedCrossRefGoogle Scholar
  7. 7.
    Leeman, M (1995) Pulmonary vascular regulation by endogenous nitric oxide. In: Fink MP, Payen D (eds) Role of Nitric Oxide in Sepsis and ARDS. Springer, Berlin Heidelberg New York, pp 308–319CrossRefGoogle Scholar
  8. 8.
    Peacock A (1993) Vasodilators in pulmonary hypertension. Thorax 48:1196–1199PubMedCrossRefGoogle Scholar
  9. 9.
    Moncada S, Higgs A (1993) The L-Arginine-nitric oxide pathway. N Engl J Med 329: 2002–2011PubMedCrossRefGoogle Scholar
  10. 10.
    Kourembanas S, McQuillan LP, Leung GK et al (1993) Nitric oxide regulates the expression of vasoconstrictors and growth factors by vascular endothelium under both normoxia and hypoxia. J Clin Invest 92:99–104PubMedCrossRefGoogle Scholar
  11. 11.
    Dinh-Xuan AT, Higenbottam TW, Clelland CA et al (1991) Impairment of endotheliumdependent pulmonary-artery relaxation in chronic obstructive lung disease. N Engl J Med 22:1539–1547CrossRefGoogle Scholar
  12. 12.
    Celermajer DS, Dollery C, Burch M et al (1994) Role of endothelium in the maintenance of low pulmonary vascular tone in normal children. Circulation 89:2041–2044PubMedCrossRefGoogle Scholar
  13. 13.
    Palmer RMJ, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature Lond 327:524–526PubMedCrossRefGoogle Scholar
  14. 14.
    Palmer RMJ, Ashton DS, Moncada S (1988) Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature Lond 333:664–666PubMedCrossRefGoogle Scholar
  15. 15.
    Brenner BM, Troy JL, Ballermann BJ (1989) Endothelium-dependent vascular responses. J Clin Invest 84:1373–1378PubMedCrossRefGoogle Scholar
  16. 16.
    Griffiths MJD, Evans TW (1995) Role of nitric oxide in pulmonary vascular dysfunction. In: Fink MP, Payen D (eds) Role of Nitric Oxide in Sepsis and ARDS. Springer, Berlin Heidelberg New York, pp 283–297CrossRefGoogle Scholar
  17. 17.
    Gustafsson LE, Lonqvist PA, Persson MG (1995) Endogenous nitric oxide formation in the respiratory system. In: Fink MP, Payen D (eds) Role of Nitric Oxide in Sepsis and ARDS. Springer, Berlin Heidelberg New York, pp 288–307Google Scholar
  18. 18.
    Bunting S, Gryglewski R, Moncada S et al (1976) Arterial walls generate from prostaglandin endoperoxides a substance (prostaglandin X) which relaxes strips of mesenteric and coeliac arteries and inhibits platelet aggregation. Prostaglandins 12:897–913PubMedGoogle Scholar
  19. 19.
    Bradley ML, Czaza FJ, Goldstein ER (1990) Circulatory effects of endothelin in newborn piglets. Am J Physiol 259:H1613–H1617Google Scholar
  20. 20.
    Panek RL, Major TC, Hingorani GP et al (1992) Endothelin and structurally related analogs distinguish between endothelin receptors subtypes. Biochem Biophys Res Commun 183: 566–571PubMedCrossRefGoogle Scholar
  21. 21.
    Kourembanas S, Bernfield M (1994) Hypoxia and endothelial-smooth muscle cell interactions in the lung. Am J Respir Cell Mol Biol 11:373–374PubMedCrossRefGoogle Scholar
  22. 22.
    Wong J, Vanderford PA, Fineman JR et al (1993) Endothelin-1 produces pulmonary vasodilation in the intact newborn lamb. Amn J Physiol 265:H1318–H1325Google Scholar
  23. 23.
    Kourembanas S, Hannan RL, Faller V (1990) Oxygen tension regulates the expression of the platelet-derived growth factor-B chain gene in human endothelial cells. J Clin Invest 86: 670–674PubMedCrossRefGoogle Scholar
  24. 24.
    Kourembanas S, Marsden PA, McQuillan LP et al (1991) Hypoxia induces endothelin gene expression and secretion in cultured human endothelium. J Clin Invest 88:1054–1057PubMedCrossRefGoogle Scholar
  25. 25.
    Demiryurek AT, Wadsworth RM, Kane KA et al (1993) The role of endothelium in hypoxic constriction of human pulmonary artery rings. Am Rev Respir Dis 147:283–290PubMedCrossRefGoogle Scholar
  26. 26.
    Nathan C, Xie QW (1994) Regulation of biosynthesis of nitric oxide. J Biol Chem 269: 13725–13728PubMedGoogle Scholar
  27. 27.
    Stamler JS, Loh E, Roddy M et al (1994) Nitric oxide regulates systemic and pulmonary vascular resistance in normal subjects. Circulation 89:2035–2040PubMedCrossRefGoogle Scholar
  28. 28.
    Chand N, Altura BM (1981) Acetylcoline and bradykinin relax intrapulmonary arteries by acting on endothelial cells: Role in lung vascular diseases. Science 213:1376–1379PubMedCrossRefGoogle Scholar
  29. 29.
    Greenberg B, Rhoden K, Barnes PJ (1987) Endothelium-dependent relaxation of human pulmonary arteries. Am J Physiol 252:H434–H438Google Scholar
  30. 30.
    Frostell C, Fratacci MD, Wain JC et al (1991) Inhaled nitric oxide. A selective pulmonary vasodilator reversing hypoxic pulmonary vasoconstriction. Circulation 83:2038–2047PubMedCrossRefGoogle Scholar
  31. 31.
    Fratacci MD, Frostell CG, Chen TY et al (1991) Inhaled nitric oxide. A selective pulmonary vasodilator of heparin-protaminevasoconstriction in sheep. Anesthesiology 75:990–999PubMedCrossRefGoogle Scholar
  32. 32.
    Auler Jr JOC, Carmona MJC, Bocchi EA et al (1995) Inhaled nitric oxide in patients submitted to heart transplantation with pulmonary hypertension. Anesthesiology 83(3A):79Google Scholar
  33. 33.
    Frostell CG, Blomqvist H, Hedenstierna G et al (1993) Inhaled nitric oxide selectively reverses human hypoxic pulmonary vasoconstriction without causing systemic vasodilatation. Anesthesiology 78:427–435PubMedCrossRefGoogle Scholar
  34. 34.
    Rossaint R, Falke KJ, Lopez F et al (1993) Inhaled nitric oxide for the adult respiratory distress syndrome. N Engl J Med 328:399–405PubMedCrossRefGoogle Scholar
  35. 35.
    Bone RC, Balk R, Slotman G et al (1992) Adult respiratory distress syndrome. sequence ana importance of development of multiple organ failure. The Prostaglandin El Study Group. Chest 101:320–326PubMedCrossRefGoogle Scholar
  36. 36.
    Prewitt RM, McCarthy J, Wood LDH (1981) Treatment of acute low pressure pulmonary edema in dogs. J Clin Invest 67:409–418PubMedCrossRefGoogle Scholar
  37. 37.
    Liu SF, Dewar A, Crawley DE et al (1992) Effect of tumor necrosis factor on hypoxic pulmonary vasoconstriction. J Appl Physiol 72:1044–1049PubMedGoogle Scholar
  38. 38.
    Gossage JR, Christman BW (1994) Mediators of acute and chronic pulmonary hypertension. Sem Respir Crit Care Med 15:190–198CrossRefGoogle Scholar
  39. 39.
    Ogata M, Ohe M, Katayose D et al (1992) Modulatory role of EDKF in hypoxic contraction of isolated porcine pulmonary arteries. Am Physiol Soc H691–H697.Google Scholar
  40. 40.
    Madden MCR, Vender RL, Friedman M (1986) Effect of hypoxia on protacyclin production in cultured pulmonary artery endothelium. Prostaglandins 31:1049–1062PubMedGoogle Scholar
  41. 41.
    Feddersen COS, Chang J, Czartalomna J et al (1990) Arachidonic acid causes cyclooxygenase dependent and independent pulmonary vasodilation. J Appl Physiol 68:1799–1808PubMedGoogle Scholar
  42. 42.
    Pober JS, Gimbrone MA, Lapierre LA et al (1986) Overlapping patterns of activation of human endothelial cells by interleukin-1, tumor necrosis factor, and immune interferon. J Immunol 137:1893–1896PubMedGoogle Scholar
  43. 43.
    Tate RM, Repine JE (1983) Neutrophils and the adult respiratory distress syndrome. Am Rev Respir Dis 128:552–559PubMedGoogle Scholar
  44. 44.
    Stephens KE, Ischizaka A, Larrick JW et al (1987) Tumor necrosis factor causes increased pulmonary permeability and edema. Am Rev Respir Dis 137:1364–1370CrossRefGoogle Scholar
  45. 45.
    Gerkin TM, Oldham KT, Guice KS et al (1993) Intestinal ischemia-reperfusion injury causes pulmonary endothelial cell ATP depletion. Ann Surg 217:48–56PubMedCrossRefGoogle Scholar
  46. 46.
    Klausner JM, Paterson IS, Goldman G et al (1989) Thromboxane A2 mediates increased pulmonary microvascular permeability following limb ischemia. Cir Res 64:1178–1189CrossRefGoogle Scholar
  47. 47.
    Paterson IS, Klausner JM, Goldman G et al (1989) Pulmonary edema after aneurysm surgery is modified by mannitol. Ann Surg 210:796–801PubMedGoogle Scholar
  48. 48.
    Hocking DC, Phillips PG, Ferro TJ et al (1990) Mechanisms of pulmonary edema induced by tumor necrosis factor-a. Circ Res 67:68–76PubMedCrossRefGoogle Scholar
  49. 49.
    Klausner JM, Paterson IS, Valeri CR et al (1988) Limb ischemia-induced increase in permeability is mediated by leukocytes and leukotrienes. Ann Surg 208:755–760PubMedCrossRefGoogle Scholar
  50. 50.
    Wakabayashi G, Gelfand JA, Burke JF et al (1991) A specific receptor antagonist for interleukin-1 prevents Escherichia coli-induced shock in rabbits. FASEB J 5:338–343PubMedGoogle Scholar
  51. 51.
    Gamble JR, Harlan JM, Klebanoff SJ et al (1985) Stimulation of the adherence of neutrophils to umbilical vein endothelium by human recombinant tumor necrosis factor. Porch Natl Cad SCI USA 82:8667–8671CrossRefGoogle Scholar
  52. 52.
    Anderson BO, Poggetti RS, Shanley PF et al (1991) Primed neutrophils injure rat lung through a platelet-activating factor-dependent mechanism. J Surg Res 50:510–514PubMedCrossRefGoogle Scholar
  53. 53.
    Mozes T, Braquet P, Filep J (1989) Platelet-activating factor: An endogenous mediator of mesenteric ischemia-reperfusion-induced shock. Am J Physiol 257:872–877Google Scholar
  54. 54.
    Moore FD Jr, Wamer KG, Assousa S et al (1988) The effects of complement activation during cardiopulmonary bypass. Attenuation by hypothermia, heparin and hemodilution. Ann Surg 208:95–103PubMedCrossRefGoogle Scholar
  55. 55.
    Weinberg P, Matthay M, Webster R et al (1984) Biologically active products of complement and acute lung injury in patients with the sepsis syndrome. Am Rev Dis 130:791–796Google Scholar
  56. 56.
    Harlan JM (1985) Leukocyte-Endothelial interactions. Blood 65:513–525PubMedGoogle Scholar
  57. 57.
    Welbourn CRB, Goldman G, Paterson IS et al (1991) Neutrophil elastase and oxygen radicals: Synergism in lung injury after hind limb ischemia. Am J Physiol 260:1852–1856Google Scholar
  58. 58.
    Jacob HS (1983) Complement-mediated leucoembolization: a mechanism of tissue damage during extracorporeal perfusions, myocardial infarction, and shock — A review. Q J Med 52: 289–296PubMedGoogle Scholar
  59. 59.
    Weiss SJ (1989) Tissue destruction by neutronhils. N Engl T Med 320:365–376CrossRefGoogle Scholar
  60. 60.
    Fullerton DA, Hahn AR, Koike K et al (1993) Intracellular mechanisms of pulmonary vasomotor dysfunction in acute lung injury caused by mesenteric ischemia-reperfusion. Surgery 114:360–367PubMedGoogle Scholar
  61. 61.
    Gerkin TM, Oldham K, Guice K et al (1993) Intestinal ischemia-reperfusion injury causes pulmonary endothelial cell ATP depletion. Ann Surg 217:48–56PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 1997

Authors and Affiliations

  • J. O. C. AulerJr.

There are no affiliations available

Personalised recommendations