Skip to main content

Abstract

The bewildering complexity of human brain, with its 1011 neurons which can be classified into about 103 different cell types, is by far the most intricate biological system ever studied. This complexity is further amplified by the thousands of interconnections, called synapses, with which each neuron is tied into its neural network. The autonomy of nerve terminals allows the independent regulation of the different synapses present in the same neuron. This property is at the origin of the selective modulation of subsets of synapses, a process that integrates neural circuits. Defects in this delicate apparatus underlie some of the most devastating diseases of the nervous system, such as myasthenia gravis, Parkinson’s disease, schizophrenia, and depression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jacobson M (1993) Struggle for synthesis of the Neuron Theory. In: Foundations of Neuroscience, by Jacobson M, Plenum Press, New York and London, pp 151–227

    Google Scholar 

  2. Jessel TM, Kandel ER (1993) Synaptic transmission: a bidirectional and self-modifiable form of cell-cell communication. Cell 72/Neuron 10[Suppl]:l-30

    Google Scholar 

  3. Calakos N, Scheller RH (1996) Synaptic vesicle biogenesis, docking and fusion: a molecular description. Physiol Rev 76:1–29

    PubMed  CAS  Google Scholar 

  4. Clements JD (1996) Transmitter time course in the synaptic cleft: its role in central synaptic function. Trends Neurosci 19:163–171

    Article  PubMed  CAS  Google Scholar 

  5. Unwin N (1993) Neurotransmitter action: opening of ligand-gated channels. Cell 72/Neuron 10[Suppl]:31–41

    Article  Google Scholar 

  6. Hawkins RD (1996) No honey, I don’t remember. Neuron 16:465–467

    Article  PubMed  CAS  Google Scholar 

  7. Bothwell M (1995) Functional interactions of neurotrophins and neurotrophin receptors. Annu Rev Neurosci 18:223–253

    Article  PubMed  CAS  Google Scholar 

  8. Bonhoeffer T (1996) Neurotrophins and activity-dependent development of the neocortex. Curr Opin Neurobiol 6:119–126

    Article  PubMed  CAS  Google Scholar 

  9. De Camilli P, Jahn R (1990) Pathways to regulated exocytosis in neurons. Annu Rev Physiol 52:625–645

    Article  PubMed  Google Scholar 

  10. Hokfelt T (1991) Neuropeptides in perspective: the last ten years. Neuron 7:867–879

    Article  PubMed  CAS  Google Scholar 

  11. Bauerfeind R, Huttner W (1993) Biogenesis of constitutive secretory vesicles, secretory granules and synaptic vesicles. Curr Opin Cell Biol 5:628–635

    Article  PubMed  CAS  Google Scholar 

  12. Dennis-Donini S (1992) Calcitonin gene-related peptide influence on central nervous system differentiation. Annals NY Acad Sci 657:344–350

    Article  Google Scholar 

  13. Cooke NE, Cot D, Weiner RI et al (1980) Structure of a cDNA complementary to rat prolactin messenger RNA. J Biol Chem 255:6502–6510

    PubMed  CAS  Google Scholar 

  14. Tooze SA, Stinchombe JC (1992) Biogenesis of secretory granules. Seminars Cell Biol 3: 357–366

    Article  CAS  Google Scholar 

  15. Schaefer M, Picciotto MR, Kreiner T et al (1985) Aplysia neurons express a gene encoding multiple FMRF-amide neuropeptides. Cell 41:457–467

    Article  PubMed  CAS  Google Scholar 

  16. Simon EJ, Hiller JM (1994) Opioid peptides and opioid receptors. In: Siegel GJ, Agranoff BW, Albers R et al (eds) Basic Neurochemistry, 5th edn. Raven Press, New York

    Google Scholar 

  17. Amara SG, Jones V, Rosenfeld MG et al (1982) Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide products. Nature 298: 240–244

    Article  PubMed  CAS  Google Scholar 

  18. Nawa H, Kotani H, Nakanishi S (1984) Tissue-specific generation of two preprotachykinin mRNAs from one gene by alternative RNA splicing. Nature 312:729–734

    Article  PubMed  CAS  Google Scholar 

  19. Sossin WS, Fisher JM, Scheller RH (1989) Cellular and molecular biology of neuropeptide processing and packaging. Neuron 2:1407–1417

    Article  PubMed  CAS  Google Scholar 

  20. Chanat E, Huttner WB (1991) Milieu-induced, selective aggregation of regulated secretory proteins in the trans-Golgi network. J Cell Biol 115:1505–1519

    Article  PubMed  CAS  Google Scholar 

  21. Steele PA, Costa E (1990) Opioid-like immunoreactive neurons in secretomotor pathways of the guinea pig ileum. Neuroscience 38:771–786

    Article  PubMed  CAS  Google Scholar 

  22. Iversen LL (1995) Neuropeptides: promise unfilled? Trends Neurosci 18:49–50

    Article  PubMed  CAS  Google Scholar 

  23. Thureson-Klein K (1983) Exocytosis from large and small dense cored vesicles in noradrenergic nerve terminals. Neuroscience 10:245–252

    Article  PubMed  CAS  Google Scholar 

  24. Tsukita S, Ishikawa H (1980) The movement of membraneous organelles in axons. J Cell Biol 84:513–530

    Article  PubMed  CAS  Google Scholar 

  25. Regnier-Vigouroux A, Tooze SA, Huttner WB (1991) Newly synthesized synaptophysin is transported to synaptic-like microvesicles via constitutive secretory vesicles and the plasma membrane. EMBO J 10:3589–3601

    PubMed  CAS  Google Scholar 

  26. Regnier-Vigouroux A, Huttner WB (1993) Biogenesis of small synaptic vesicles and synaptic-like microvesicles. Neurochem Res 18:59–64

    Article  PubMed  CAS  Google Scholar 

  27. Bennett MK, Calakos N, Kreinner T et al (1992) Synaptic vesicle membrane proteins insert to form a multimeric complex. J Cell Biol 116:761–775

    Article  PubMed  CAS  Google Scholar 

  28. Feany MB, Lee S, Edwards RH et al (1993) The synaptic vesicle proteins SV2, synaptotagmin and synaptophysin are sorted to separate cellular compartments in CHO fibroblasts. J Cell Biol 123:575–584

    Article  PubMed  CAS  Google Scholar 

  29. Pley U, Parham P (1993) Chlatrin: its role in receptor-mediated vesicular transport and specialized functions in neurons. Crit Rev Mol Biol 28:431–464

    Article  CAS  Google Scholar 

  30. Hirokawa N (1996) Organelle transport along microtubules - the role of KIFs. Trends Cell Biol 6:135–141

    Article  PubMed  CAS  Google Scholar 

  31. Brady ST, Sperry AO (1995) Biochemical and functional diversity of microtubules motors in the nervous system. Curr Opin Neurobiol 5:551–558

    Article  PubMed  CAS  Google Scholar 

  32. Coy DL, Howard J (1994) Organelle transport and sorting in axons. Curr Opin Neurobiol 4:662–667

    Article  PubMed  CAS  Google Scholar 

  33. Kuno M (1995) How transmitter release is triggered. In: Kuno M (ed) The synapse: function, plasticity and neurotrophism. Oxford University Press Oxford New York Tokyo

    Google Scholar 

  34. Nelson N (1992) The vacuolar H+ ATPase - one of the most fundamental ion pumps in nature. J Exp Biol 172:19–27

    PubMed  CAS  Google Scholar 

  35. Tabb JS, Kish PE, van Dyke R et al (1992) Glutamate transport into synaptic vesicles: roles of membrane potential, pH gradient, and intravesicular pH. J Biol Chem 267:15412–15418

    PubMed  CAS  Google Scholar 

  36. Kelly RB (1993) Storage and release of neurotransmitters. Cell 72/Neuron 10[Suppl]:43–53

    Article  Google Scholar 

  37. Ferro-Novick S, Jahn R (1994) Vesicle fusion from yeast to man. Nature 370:191–193

    Article  PubMed  CAS  Google Scholar 

  38. De Camilli P, Benfenati F, Valtorta F et al (1990) The synapsins. Annu Rev Cell Biol 6: 433–460

    Article  PubMed  Google Scholar 

  39. Sudhof TC (1995) The synaptic vesicle cycle: a cascade of protein-protein interactions. Nature 375:645–653

    Article  PubMed  CAS  Google Scholar 

  40. Burns ME, Augustine GJ (1995) Synaptic structure and function: dynamic organization yelds architectural precision. Cell 83:187–194

    Article  PubMed  CAS  Google Scholar 

  41. Bennett MK, Scheller RH (1994) A molecular description of synaptic vesicle membrane trafficking. Annu Rev Biochem 63:63–100

    Article  PubMed  CAS  Google Scholar 

  42. Valtorta F, Benfenati F, Greengard P (1992) Structure and function of the synapsins. J Biol Chem 267:7195–7198

    PubMed  CAS  Google Scholar 

  43. Rosahi TW, Spillane D, Missier M et al (1995) Essential functions of synapsins I and II in synaptic vesicle regulation. Nature 375:488–493

    Article  Google Scholar 

  44. Pieribone VA, Shupliakov O, Brodin L et al (1995) Distinct pools of synaptic vesicles in neurotransmitter release. Nature 375:493–497

    Article  PubMed  CAS  Google Scholar 

  45. Di Liegro I, Savettieri G, Coppolino M et al (1995) Expression of synapsin I gene in primary cultures of differentiating rat cortical neurons. Neurochem Res 20:239–243

    Article  PubMed  Google Scholar 

  46. Zerial M (1995) Rab proteins. In: Zerial M, Huber LA (eds) Guide book to the small GTPases. Oxford University Press, Oxford, New York, Tokyo

    Google Scholar 

  47. Goda Y, Stevens CF (1994) Two components of transmitter release at a central synapse. Proc Natl Acad Sci USA 91:12942–12946

    Article  PubMed  CAS  Google Scholar 

  48. Neher E, Augustine GJ (1992) Calcium gradients and buffers in bovine chromaffin cells. J Physiol Lond 450:273–301

    PubMed  CAS  Google Scholar 

  49. Dunlap K, Luebke JI, Turner TJ (1995) Exocytotic Ca2+ channels in mammalian central neurons. Trends Neurosci 18:89–98

    Article  PubMed  CAS  Google Scholar 

  50. Hayashi T, Yamasaki S, Nauenburg S et al (1995) Disassembly of the reconstituted synaptic vesicle membrane fusion complex in vitro. EMBO J 14:2317–2325

    PubMed  CAS  Google Scholar 

  51. Brennwald P, Kearns B, Champion K et al (1994) Sec9 is a SNAP-25-like component of a yeast SNARE complex that may be the effector of Sec4 function in exocytosis. Cell 79: 245–258

    Article  PubMed  CAS  Google Scholar 

  52. Harrison SK, Broadie K, Goor JVD et al (1994) Mutations in the Drosophila rop gene suggests a function in general secretion and synaptic transmission. Neuron 13:555–566

    Article  PubMed  CAS  Google Scholar 

  53. Pevsner J, Hsu SC, Braun JEA et al (1994) Specificity and regulation of a synaptic vesicle docking complex. Neuron 13:353–361

    Article  PubMed  CAS  Google Scholar 

  54. Whiteheart SW, Kubalek EW (1995) SNAPs and NSF: general members of the fusion apparatus. Trends Cell Biol 5:64–68

    Article  PubMed  CAS  Google Scholar 

  55. Zimmerberg J, Vogel SS, Chernomordik LV (1993) Mechanisms of membrane fusion. Annu Rev Biophys Biomol Struct 22:433–466

    Article  PubMed  CAS  Google Scholar 

  56. Schweizer FE, Betz H, Augustine GJ (1995) From vesicle docking to endocytosis: intermediate reactions of exocytosis. Neuron 14:689–696

    Article  PubMed  CAS  Google Scholar 

  57. Adler J, Lu B, Valtorta F et al (1992) Calcium-dependent transmitter secretion reconstituted in Xenopus oocytes: requirement for synaptophysin. Science 257:657–661

    Article  Google Scholar 

  58. Adler J, Xie Z, Valtorta F et al (1992) Antibodies to synaptophysin interfere with transmitter secretion at the neuromuscular synapses. Neuron 9:759–768

    Article  Google Scholar 

  59. Thomas L, Hartung K, Langosch D et al (1988) Identification of synaptophysin as a hexameric channel protein of the synaptic vesicle membrane. Science 242:1050–1053

    Article  PubMed  CAS  Google Scholar 

  60. Kumar NM, Gilula NB (1996) The gap junction communication channel. Cell 84:381–388

    Article  PubMed  CAS  Google Scholar 

  61. De Camilli P, Takei K (1996) Molecular mechanisms in synaptic vesicle endocytosis and recycling. Neuron 16:481–486

    Article  PubMed  Google Scholar 

  62. Heuser J (1989) The role of synaptic coated vesicles in recycling of synaptic vesicle membrane. Cell Biol Internatl Reports 13:1063–1076

    Article  CAS  Google Scholar 

  63. Ye W, Ali N, Bembenek ME et al (1995) Inhibition of clatrin assembly by high affinity binding of specific inositol polyphosphates to the synapse-specific clatrin assembly protein AP-3. J Biol Chem 270:1564–1568

    Article  PubMed  CAS  Google Scholar 

  64. Thomas PA, Lee K, Wong G et al (1994) A triggered mechanism retrieves membrane in seconds after calcium-stimulated exocytosis in single pituitary cells. J Cell Biol 124:667–675.

    Article  PubMed  CAS  Google Scholar 

  65. Koenig JH, Ikeda K (1989) Disappearance and reformation of synaptic vesicle membrane upon transmitter release observed under reversible blockage of membrane retrieval. J Neurosci 9:3844–3860

    PubMed  CAS  Google Scholar 

  66. Takei K, McPherson PS, Schmid SL et al (1995) Tubular membrane invaginations coated by dynamin mediate budding from internal membranes in nerve terminals. Nature 374:186–190

    Article  PubMed  CAS  Google Scholar 

  67. Ungewickel E, Ungewickel H, Holstein SEH et al (1995) Role of auxillin in uncoating clatrin-coated vesicles. Nature 378:632–635

    Article  Google Scholar 

  68. Erulkar SD (1994) Chemically mediated synaptic transmission: an overview. In: Siegel GJ, Agranoff BW, Albers RW et al (eds) Basic Neurochemistry, 5th edn. Raven Press, New York

    Google Scholar 

  69. Riedel G (1996) Function of metabotropic glutamate receptors in learning and memory. Trends Neurosci 19:219–224

    Article  PubMed  CAS  Google Scholar 

  70. Dani JA, Mayer ML (1995) Structure and function of glutamate and nicotinic acetylcholine receptors. Curr Opin Neurobiol 5:310–317

    Article  PubMed  CAS  Google Scholar 

  71. Kuhse J, Betz H, Kirsch J (1995) The inhibitory glycine receptor: architecture, synaptic localization and molecular pathology of a postsynaptic ion-channel complex. Curr Opin Neurobiol 5:318–323

    Article  PubMed  CAS  Google Scholar 

  72. Hollmann M, Maron C, Heinemann S (1994) N-glycosylation site tagging suggests a three transmembrane domain topology for the glutamate receptor GluRl. Neuron 13: 1331–1343

    Article  PubMed  CAS  Google Scholar 

  73. Seeburg PH (1993) The molecular biology of mammalian glutamate receptor channels. Trends Neurosci 16:359–365

    Article  PubMed  CAS  Google Scholar 

  74. Hollmann M, Heinemann S (1994) Cloned glutamate receptors. Annu Rev Neurosci 17: 31–108

    Article  PubMed  CAS  Google Scholar 

  75. Jonas P, Racca C, Sakmann B et al (1994) Differences in Ca2+ permeability of AMPA-type glutamate receptor channels in neocortical neurons caused by differential gluR-B subunit expression. Neuron 12:1281–1289

    Article  PubMed  CAS  Google Scholar 

  76. Kim U, Nishikura K (1993) Double-stranded RNA adenosine deaminase as a potential mammalian RNA editing factor. Seminars Cell Biol 4:285–293

    Article  CAS  Google Scholar 

  77. Lomeli H, Mosbacher J, Melcher T et al (1994) Control of kinetic properties of AMPA receptor channels by nuclear RNA editing. Science 266:1709–1713

    Article  PubMed  CAS  Google Scholar 

  78. Dabiri GA, Lai F, Drakas RA, Nishikura K (1996) Editing of the GluR-B ion channel RNA in vitro by recombinant double-stranded RNA adenosine deaminase. EMBO J 15:34–45

    PubMed  CAS  Google Scholar 

  79. Benne R (1996) The long and short of it. Nature 380:391–392

    Article  PubMed  CAS  Google Scholar 

  80. Brownstein MJ (1994) Neuropeptides. In: Siegel GJ, Agranoff BW, Albers R et al (eds) Basic Neurochemistry, 5th edn. Raven Press, New York

    Google Scholar 

  81. Wickman KD, Clapham DE (1995) G-protein regulation of ion channels. Curr Opin Neurobiol 5:278–285

    Article  PubMed  CAS  Google Scholar 

  82. Zimmerman AL (1995) Cyclic nucleotide gated channels. Curr Opin Neurobiol 5, 296–303

    Article  PubMed  CAS  Google Scholar 

  83. Hamm HE, Gilchrist A (1996) Heterotrimeric G proteins. Curr Opin Cell Biol 8:189–196

    Article  PubMed  CAS  Google Scholar 

  84. Clapham DE (1996) The G-protein nanomachine. Nature 379:297–299

    Article  PubMed  CAS  Google Scholar 

  85. Logothetis DE, Kurachi Y, Galper J et al (1987) The (3y subunits of GTP-binding proteins activate the muscarinic K+ channel in heart. Nature 325:321–326

    Article  PubMed  CAS  Google Scholar 

  86. Clapham DE, Neer EJ (1993) New roles for G-protein py-dimers in transmembrane signalling. Nature 365:403–406

    Article  PubMed  CAS  Google Scholar 

  87. Schrebmayer W, Dessauer CW, Vorobiov D et al (1996) Inhibition of an inwardly rectifying K+ channel by G-protein a-subunits. Nature 380:624–627

    Article  Google Scholar 

  88. Lefkowitz RJ (1993) G protein-coupled receptor kinases. Cell 74:409–412

    Article  PubMed  CAS  Google Scholar 

  89. Wilson CJ, Applebury ML (1993) Arresting G-protein-coupled receptor activity. Current Biol 3:683–686

    Article  CAS  Google Scholar 

  90. Koelle MR, Horvitz HR (1996) EGL-10 regulates G protein signalling in the C.elegans nervous system and shares a conserved domain with many mammalian proteins. Cell 84: 115–125

    Article  PubMed  CAS  Google Scholar 

  91. Siderovski DP, Hessel A, Chung S et al (1996) A new family of regulators of G-protein-coupled receptors? Current Biol 6:211–212

    Article  CAS  Google Scholar 

  92. Wan Y, Kurosaki T, Huang XY (1996) Tyrosine kinases in activation of the MAP kinase cascade by G protein-coupled receptors. Nature 380:541–544

    Article  PubMed  CAS  Google Scholar 

  93. van Corven E, Hordijk PL, Medema RH et al (1993) Pertussis toxin-sensitive activation of p21ras by G protein-coupled receptor agonists in fibroblasts. Proc Natl Acad Sci USA 90:1257–1261

    Article  PubMed  Google Scholar 

  94. Takata M, Sabe H, Hata A et al (1994) Tyrosine kinases Lyn and Syk regulate B cell receptor-coupled Ca2+ mobilization through distinct pathways. EMBO J 13:1341–1349

    PubMed  CAS  Google Scholar 

  95. van Biesen T, Hawes BE, Luttrell DK et al (1995) Receptor-tyrosine-kinase- and G(3y-mediated MAP kinase activation by a common signalling pathway. Nature 376:781–784

    Article  PubMed  Google Scholar 

  96. Karin M, Hunter T (1995) Transcriptional control by protein phosphorylation: signal transmission from the cell surface to the nucleus. Current Biol 5:747–757

    Article  CAS  Google Scholar 

  97. Cahill MA, Janknecht R, Nordheim A (1996) Signalling pathways: jack of all cascades. Current Biol 6:16–19

    Article  CAS  Google Scholar 

  98. Ihle JN (1996) STATs and MAPKs: obligate or opportunistic partners in signalling. BioEssays 18:95–98

    Article  PubMed  CAS  Google Scholar 

  99. Chrivia JC, Kwok RP, Lamb N et al (1993) Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature 365:855–859

    Article  PubMed  CAS  Google Scholar 

  100. Saltiel AR, Decker SJ (1994) Cellular mechanisms of signal transduction for neurotrophins. BioEssays 16:405–411

    Article  PubMed  CAS  Google Scholar 

  101. Lo DC (1996) Neurotrophic factors and synaptic plasticity. Neuron 15:979–981

    Article  Google Scholar 

  102. Songyang Z, Cantley LC (1995) Recognition and specificity in protein tyrosine kinase-mediated signalling. Trends Biochem Sci 20:470–475

    Article  PubMed  CAS  Google Scholar 

  103. Wandless TJ (1996) SH2 domains: a question of independence. Curr Biol 6:125–127

    Article  PubMed  CAS  Google Scholar 

  104. Hunter T (1995) Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signalling. Cell 80:225–236

    Article  PubMed  CAS  Google Scholar 

  105. Finkbeiner S, Greenberg ME (1996) Ca2+-dependent routes to Ras: mechanisms for neuronal survival, differentiation, and plasticity? Neuron 16:233–236

    Article  PubMed  CAS  Google Scholar 

  106. Kang H, Schuman EM (1995) Long-lasting neurotrophin-induced enhancement of synaptic transmission in the adult hippocampus. Science 267:1658–1662

    Article  PubMed  CAS  Google Scholar 

  107. Weiner N, Molinoff PB (1994) Catecholamines. In: Siegel GJ, Agranoff BW, Albers R et al (eds) Basic Neurochemistry, 5th edn. Raven Press, New York

    Google Scholar 

  108. Hebb DO (1949) The organization of behavior: a neuropsychological theory. Wiley ed, New York

    Google Scholar 

  109. Sossin WS (1996) Mechanisms for the generation of synapse specificity in long-term memory: the implications of a requirement for transcription. Trends Neurosci 19:215–218

    Article  PubMed  CAS  Google Scholar 

  110. Schulman H (1995) Protein phosphorylation in neural plasticity and gene expression. Curr Opin Neurobiol 5:375–381

    Article  PubMed  CAS  Google Scholar 

  111. Bliss TVP, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39

    Article  PubMed  CAS  Google Scholar 

  112. Carew TJ (1996) Molecular enhancement of memory formation. Neuron 16:5–8

    Article  PubMed  CAS  Google Scholar 

  113. Quinlan E, Halpain S (1996) Postsynaptic mechanisms for bidirectional control of MAP2 phosphorylation by glutamate receptors. Neuron 16:357–368

    Article  PubMed  CAS  Google Scholar 

  114. Malenka RC (1994) Synaptic plasticity in the hippocampus: LTP and LTD. Cell 78:535–538

    Article  PubMed  CAS  Google Scholar 

  115. Neven D, Zucker RS (1996) Postsynaptic levels of [Ca2+]i needed to trigger LTD and LTP. Neuron 16:619–629

    Article  Google Scholar 

  116. Muller U (1996) Inhibition of nitric oxide synthase impairs a distinct form of long-term memory in the honeybee, apis mellifera. Neuron 16:541–549

    Article  PubMed  CAS  Google Scholar 

  117. Yin J, Wallach JS, Del Vecchio M et al (1994) Induction of dominant negative CREB transgene specifically blocks long-term memory in Drosophila. Cell 79:49–58

    Article  PubMed  CAS  Google Scholar 

  118. Steward O, Banker GA (1992) Getting the message from the gene to the synapse: sorting and intracellular transport of RNA in neurons. Trends Neurosci 15:180–186

    Article  PubMed  CAS  Google Scholar 

  119. Ferrandon D, Elpick L, Nusslein-Volhard C et al (1994) Staufen protein associates with the 3′-UTR of bicoid mRNA to form particle that move in a microtubule-dependent manner. Cell 79:1221–1232

    Article  PubMed  CAS  Google Scholar 

  120. Steward O (1995) Targeting of mRNAs to susynaptic microdomains in dendrites. Curr Opin Neurobiol 5:55–61

    Article  PubMed  CAS  Google Scholar 

  121. Davis KL, Kahn RS, Ko G et al (1991) Dopamine in schizophrenia: a review and reconceptualization. Am J Psychiat 148:1474–1486

    PubMed  CAS  Google Scholar 

  122. Niznik HB, Van Tol HH (1992) Dopamine receptor genes: new tool for molecular psychiatry. J Psychiatry Neurosci 17:158–190

    PubMed  CAS  Google Scholar 

  123. Lindvall O, Odin P (1994) Clinical application of cell transplantation and neurotrophic factors in CNS disorders. Curr Opin Neurobiol 4:752–757

    Article  PubMed  CAS  Google Scholar 

  124. Kraus JE, McNamara JO (1995) Clinical relevance of defects in signalling pathways. Curr Opin Neurobiol 5:358–366

    Article  PubMed  CAS  Google Scholar 

  125. Keating MT, Sanguinetti MC (1996) Pathophysiology of ion channel mutations. Curr Opin Genet Dev 6:326–333

    Article  PubMed  CAS  Google Scholar 

  126. Cannon SC, Brown RH Jr, Corey DP (1991) A sodium channel defect in hyperkalemic periodic paralysis: potassium-induced failure of inactivation. Neuron 6:619–626

    Article  PubMed  CAS  Google Scholar 

  127. Fontaine B, Vale-Santos JM, Jurkat-Rott K et al (1994) Mapping of the hypokalemic periodic paralysis (HypoPP) locus to chromosome lq31–32 in three European families. Nature Genet 6:267–272

    Article  PubMed  CAS  Google Scholar 

  128. Shiang R, Ryan SG, Zhu YZ et al (1993) Mutations in the al subunit of the inhibitory glycine receptor cause the dominant neurologic disorder, hyperekplexia. Nature Genet 5:351–358

    Article  PubMed  CAS  Google Scholar 

  129. Rogers SW, Andrews PI, Gahring LC et al (1994) Autoantibodies to glutamate receptor GluR3 in Rasmussen’s encephalitis. Science 265:648–651

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Italia

About this paper

Cite this paper

Savettieri, G., Cestelli, A., Di Liegro, I. (1997). Biochemistry of Neurotransmission: an Update. In: Gullo, A. (eds) Anaesthesia, Pain, Intensive Care and Emergency Medicine — A.P.I.C.E.. Springer, Milano. https://doi.org/10.1007/978-88-470-2296-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2296-6_2

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-3-540-75032-1

  • Online ISBN: 978-88-470-2296-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics