Biochemistry of Neurotransmission: an Update

  • G. Savettieri
  • A. Cestelli
  • I. Di Liegro
Conference paper


The bewildering complexity of human brain, with its 1011 neurons which can be classified into about 103 different cell types, is by far the most intricate biological system ever studied. This complexity is further amplified by the thousands of interconnections, called synapses, with which each neuron is tied into its neural network. The autonomy of nerve terminals allows the independent regulation of the different synapses present in the same neuron. This property is at the origin of the selective modulation of subsets of synapses, a process that integrates neural circuits. Defects in this delicate apparatus underlie some of the most devastating diseases of the nervous system, such as myasthenia gravis, Parkinson’s disease, schizophrenia, and depression.


Synaptic Vesicle Nerve Terminal Long Term Depression Periodic Paralysis Synaptic Vesicle Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jacobson M (1993) Struggle for synthesis of the Neuron Theory. In: Foundations of Neuroscience, by Jacobson M, Plenum Press, New York and London, pp 151–227Google Scholar
  2. 2.
    Jessel TM, Kandel ER (1993) Synaptic transmission: a bidirectional and self-modifiable form of cell-cell communication. Cell 72/Neuron 10[Suppl]:l-30Google Scholar
  3. 3.
    Calakos N, Scheller RH (1996) Synaptic vesicle biogenesis, docking and fusion: a molecular description. Physiol Rev 76:1–29PubMedGoogle Scholar
  4. 4.
    Clements JD (1996) Transmitter time course in the synaptic cleft: its role in central synaptic function. Trends Neurosci 19:163–171PubMedCrossRefGoogle Scholar
  5. 5.
    Unwin N (1993) Neurotransmitter action: opening of ligand-gated channels. Cell 72/Neuron 10[Suppl]:31–41CrossRefGoogle Scholar
  6. 6.
    Hawkins RD (1996) No honey, I don’t remember. Neuron 16:465–467PubMedCrossRefGoogle Scholar
  7. 7.
    Bothwell M (1995) Functional interactions of neurotrophins and neurotrophin receptors. Annu Rev Neurosci 18:223–253PubMedCrossRefGoogle Scholar
  8. 8.
    Bonhoeffer T (1996) Neurotrophins and activity-dependent development of the neocortex. Curr Opin Neurobiol 6:119–126PubMedCrossRefGoogle Scholar
  9. 9.
    De Camilli P, Jahn R (1990) Pathways to regulated exocytosis in neurons. Annu Rev Physiol 52:625–645PubMedCrossRefGoogle Scholar
  10. 10.
    Hokfelt T (1991) Neuropeptides in perspective: the last ten years. Neuron 7:867–879PubMedCrossRefGoogle Scholar
  11. 11.
    Bauerfeind R, Huttner W (1993) Biogenesis of constitutive secretory vesicles, secretory granules and synaptic vesicles. Curr Opin Cell Biol 5:628–635PubMedCrossRefGoogle Scholar
  12. 12.
    Dennis-Donini S (1992) Calcitonin gene-related peptide influence on central nervous system differentiation. Annals NY Acad Sci 657:344–350CrossRefGoogle Scholar
  13. 13.
    Cooke NE, Cot D, Weiner RI et al (1980) Structure of a cDNA complementary to rat prolactin messenger RNA. J Biol Chem 255:6502–6510PubMedGoogle Scholar
  14. 14.
    Tooze SA, Stinchombe JC (1992) Biogenesis of secretory granules. Seminars Cell Biol 3: 357–366CrossRefGoogle Scholar
  15. 15.
    Schaefer M, Picciotto MR, Kreiner T et al (1985) Aplysia neurons express a gene encoding multiple FMRF-amide neuropeptides. Cell 41:457–467PubMedCrossRefGoogle Scholar
  16. 16.
    Simon EJ, Hiller JM (1994) Opioid peptides and opioid receptors. In: Siegel GJ, Agranoff BW, Albers R et al (eds) Basic Neurochemistry, 5th edn. Raven Press, New YorkGoogle Scholar
  17. 17.
    Amara SG, Jones V, Rosenfeld MG et al (1982) Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide products. Nature 298: 240–244PubMedCrossRefGoogle Scholar
  18. 18.
    Nawa H, Kotani H, Nakanishi S (1984) Tissue-specific generation of two preprotachykinin mRNAs from one gene by alternative RNA splicing. Nature 312:729–734PubMedCrossRefGoogle Scholar
  19. 19.
    Sossin WS, Fisher JM, Scheller RH (1989) Cellular and molecular biology of neuropeptide processing and packaging. Neuron 2:1407–1417PubMedCrossRefGoogle Scholar
  20. 20.
    Chanat E, Huttner WB (1991) Milieu-induced, selective aggregation of regulated secretory proteins in the trans-Golgi network. J Cell Biol 115:1505–1519PubMedCrossRefGoogle Scholar
  21. 21.
    Steele PA, Costa E (1990) Opioid-like immunoreactive neurons in secretomotor pathways of the guinea pig ileum. Neuroscience 38:771–786PubMedCrossRefGoogle Scholar
  22. 22.
    Iversen LL (1995) Neuropeptides: promise unfilled? Trends Neurosci 18:49–50PubMedCrossRefGoogle Scholar
  23. 23.
    Thureson-Klein K (1983) Exocytosis from large and small dense cored vesicles in noradrenergic nerve terminals. Neuroscience 10:245–252PubMedCrossRefGoogle Scholar
  24. 24.
    Tsukita S, Ishikawa H (1980) The movement of membraneous organelles in axons. J Cell Biol 84:513–530PubMedCrossRefGoogle Scholar
  25. 25.
    Regnier-Vigouroux A, Tooze SA, Huttner WB (1991) Newly synthesized synaptophysin is transported to synaptic-like microvesicles via constitutive secretory vesicles and the plasma membrane. EMBO J 10:3589–3601PubMedGoogle Scholar
  26. 26.
    Regnier-Vigouroux A, Huttner WB (1993) Biogenesis of small synaptic vesicles and synaptic-like microvesicles. Neurochem Res 18:59–64PubMedCrossRefGoogle Scholar
  27. 27.
    Bennett MK, Calakos N, Kreinner T et al (1992) Synaptic vesicle membrane proteins insert to form a multimeric complex. J Cell Biol 116:761–775PubMedCrossRefGoogle Scholar
  28. 28.
    Feany MB, Lee S, Edwards RH et al (1993) The synaptic vesicle proteins SV2, synaptotagmin and synaptophysin are sorted to separate cellular compartments in CHO fibroblasts. J Cell Biol 123:575–584PubMedCrossRefGoogle Scholar
  29. 29.
    Pley U, Parham P (1993) Chlatrin: its role in receptor-mediated vesicular transport and specialized functions in neurons. Crit Rev Mol Biol 28:431–464CrossRefGoogle Scholar
  30. 30.
    Hirokawa N (1996) Organelle transport along microtubules - the role of KIFs. Trends Cell Biol 6:135–141PubMedCrossRefGoogle Scholar
  31. 31.
    Brady ST, Sperry AO (1995) Biochemical and functional diversity of microtubules motors in the nervous system. Curr Opin Neurobiol 5:551–558PubMedCrossRefGoogle Scholar
  32. 32.
    Coy DL, Howard J (1994) Organelle transport and sorting in axons. Curr Opin Neurobiol 4:662–667PubMedCrossRefGoogle Scholar
  33. 33.
    Kuno M (1995) How transmitter release is triggered. In: Kuno M (ed) The synapse: function, plasticity and neurotrophism. Oxford University Press Oxford New York TokyoGoogle Scholar
  34. 34.
    Nelson N (1992) The vacuolar H+ ATPase - one of the most fundamental ion pumps in nature. J Exp Biol 172:19–27PubMedGoogle Scholar
  35. 35.
    Tabb JS, Kish PE, van Dyke R et al (1992) Glutamate transport into synaptic vesicles: roles of membrane potential, pH gradient, and intravesicular pH. J Biol Chem 267:15412–15418PubMedGoogle Scholar
  36. 36.
    Kelly RB (1993) Storage and release of neurotransmitters. Cell 72/Neuron 10[Suppl]:43–53CrossRefGoogle Scholar
  37. 37.
    Ferro-Novick S, Jahn R (1994) Vesicle fusion from yeast to man. Nature 370:191–193PubMedCrossRefGoogle Scholar
  38. 38.
    De Camilli P, Benfenati F, Valtorta F et al (1990) The synapsins. Annu Rev Cell Biol 6: 433–460PubMedCrossRefGoogle Scholar
  39. 39.
    Sudhof TC (1995) The synaptic vesicle cycle: a cascade of protein-protein interactions. Nature 375:645–653PubMedCrossRefGoogle Scholar
  40. 40.
    Burns ME, Augustine GJ (1995) Synaptic structure and function: dynamic organization yelds architectural precision. Cell 83:187–194PubMedCrossRefGoogle Scholar
  41. 41.
    Bennett MK, Scheller RH (1994) A molecular description of synaptic vesicle membrane trafficking. Annu Rev Biochem 63:63–100PubMedCrossRefGoogle Scholar
  42. 42.
    Valtorta F, Benfenati F, Greengard P (1992) Structure and function of the synapsins. J Biol Chem 267:7195–7198PubMedGoogle Scholar
  43. 43.
    Rosahi TW, Spillane D, Missier M et al (1995) Essential functions of synapsins I and II in synaptic vesicle regulation. Nature 375:488–493CrossRefGoogle Scholar
  44. 44.
    Pieribone VA, Shupliakov O, Brodin L et al (1995) Distinct pools of synaptic vesicles in neurotransmitter release. Nature 375:493–497PubMedCrossRefGoogle Scholar
  45. 45.
    Di Liegro I, Savettieri G, Coppolino M et al (1995) Expression of synapsin I gene in primary cultures of differentiating rat cortical neurons. Neurochem Res 20:239–243PubMedCrossRefGoogle Scholar
  46. 46.
    Zerial M (1995) Rab proteins. In: Zerial M, Huber LA (eds) Guide book to the small GTPases. Oxford University Press, Oxford, New York, TokyoGoogle Scholar
  47. 47.
    Goda Y, Stevens CF (1994) Two components of transmitter release at a central synapse. Proc Natl Acad Sci USA 91:12942–12946PubMedCrossRefGoogle Scholar
  48. 48.
    Neher E, Augustine GJ (1992) Calcium gradients and buffers in bovine chromaffin cells. J Physiol Lond 450:273–301PubMedGoogle Scholar
  49. 49.
    Dunlap K, Luebke JI, Turner TJ (1995) Exocytotic Ca2+ channels in mammalian central neurons. Trends Neurosci 18:89–98PubMedCrossRefGoogle Scholar
  50. 50.
    Hayashi T, Yamasaki S, Nauenburg S et al (1995) Disassembly of the reconstituted synaptic vesicle membrane fusion complex in vitro. EMBO J 14:2317–2325PubMedGoogle Scholar
  51. 51.
    Brennwald P, Kearns B, Champion K et al (1994) Sec9 is a SNAP-25-like component of a yeast SNARE complex that may be the effector of Sec4 function in exocytosis. Cell 79: 245–258PubMedCrossRefGoogle Scholar
  52. 52.
    Harrison SK, Broadie K, Goor JVD et al (1994) Mutations in the Drosophila rop gene suggests a function in general secretion and synaptic transmission. Neuron 13:555–566PubMedCrossRefGoogle Scholar
  53. 53.
    Pevsner J, Hsu SC, Braun JEA et al (1994) Specificity and regulation of a synaptic vesicle docking complex. Neuron 13:353–361PubMedCrossRefGoogle Scholar
  54. 54.
    Whiteheart SW, Kubalek EW (1995) SNAPs and NSF: general members of the fusion apparatus. Trends Cell Biol 5:64–68PubMedCrossRefGoogle Scholar
  55. 55.
    Zimmerberg J, Vogel SS, Chernomordik LV (1993) Mechanisms of membrane fusion. Annu Rev Biophys Biomol Struct 22:433–466PubMedCrossRefGoogle Scholar
  56. 56.
    Schweizer FE, Betz H, Augustine GJ (1995) From vesicle docking to endocytosis: intermediate reactions of exocytosis. Neuron 14:689–696PubMedCrossRefGoogle Scholar
  57. 57.
    Adler J, Lu B, Valtorta F et al (1992) Calcium-dependent transmitter secretion reconstituted in Xenopus oocytes: requirement for synaptophysin. Science 257:657–661CrossRefGoogle Scholar
  58. 58.
    Adler J, Xie Z, Valtorta F et al (1992) Antibodies to synaptophysin interfere with transmitter secretion at the neuromuscular synapses. Neuron 9:759–768CrossRefGoogle Scholar
  59. 59.
    Thomas L, Hartung K, Langosch D et al (1988) Identification of synaptophysin as a hexameric channel protein of the synaptic vesicle membrane. Science 242:1050–1053PubMedCrossRefGoogle Scholar
  60. 60.
    Kumar NM, Gilula NB (1996) The gap junction communication channel. Cell 84:381–388PubMedCrossRefGoogle Scholar
  61. 61.
    De Camilli P, Takei K (1996) Molecular mechanisms in synaptic vesicle endocytosis and recycling. Neuron 16:481–486PubMedCrossRefGoogle Scholar
  62. 62.
    Heuser J (1989) The role of synaptic coated vesicles in recycling of synaptic vesicle membrane. Cell Biol Internatl Reports 13:1063–1076CrossRefGoogle Scholar
  63. 63.
    Ye W, Ali N, Bembenek ME et al (1995) Inhibition of clatrin assembly by high affinity binding of specific inositol polyphosphates to the synapse-specific clatrin assembly protein AP-3. J Biol Chem 270:1564–1568PubMedCrossRefGoogle Scholar
  64. 64.
    Thomas PA, Lee K, Wong G et al (1994) A triggered mechanism retrieves membrane in seconds after calcium-stimulated exocytosis in single pituitary cells. J Cell Biol 124:667–675.PubMedCrossRefGoogle Scholar
  65. 65.
    Koenig JH, Ikeda K (1989) Disappearance and reformation of synaptic vesicle membrane upon transmitter release observed under reversible blockage of membrane retrieval. J Neurosci 9:3844–3860PubMedGoogle Scholar
  66. 66.
    Takei K, McPherson PS, Schmid SL et al (1995) Tubular membrane invaginations coated by dynamin mediate budding from internal membranes in nerve terminals. Nature 374:186–190PubMedCrossRefGoogle Scholar
  67. 67.
    Ungewickel E, Ungewickel H, Holstein SEH et al (1995) Role of auxillin in uncoating clatrin-coated vesicles. Nature 378:632–635CrossRefGoogle Scholar
  68. 68.
    Erulkar SD (1994) Chemically mediated synaptic transmission: an overview. In: Siegel GJ, Agranoff BW, Albers RW et al (eds) Basic Neurochemistry, 5th edn. Raven Press, New YorkGoogle Scholar
  69. 69.
    Riedel G (1996) Function of metabotropic glutamate receptors in learning and memory. Trends Neurosci 19:219–224PubMedCrossRefGoogle Scholar
  70. 70.
    Dani JA, Mayer ML (1995) Structure and function of glutamate and nicotinic acetylcholine receptors. Curr Opin Neurobiol 5:310–317PubMedCrossRefGoogle Scholar
  71. 71.
    Kuhse J, Betz H, Kirsch J (1995) The inhibitory glycine receptor: architecture, synaptic localization and molecular pathology of a postsynaptic ion-channel complex. Curr Opin Neurobiol 5:318–323PubMedCrossRefGoogle Scholar
  72. 72.
    Hollmann M, Maron C, Heinemann S (1994) N-glycosylation site tagging suggests a three transmembrane domain topology for the glutamate receptor GluRl. Neuron 13: 1331–1343PubMedCrossRefGoogle Scholar
  73. 73.
    Seeburg PH (1993) The molecular biology of mammalian glutamate receptor channels. Trends Neurosci 16:359–365PubMedCrossRefGoogle Scholar
  74. 74.
    Hollmann M, Heinemann S (1994) Cloned glutamate receptors. Annu Rev Neurosci 17: 31–108PubMedCrossRefGoogle Scholar
  75. 75.
    Jonas P, Racca C, Sakmann B et al (1994) Differences in Ca2+ permeability of AMPA-type glutamate receptor channels in neocortical neurons caused by differential gluR-B subunit expression. Neuron 12:1281–1289PubMedCrossRefGoogle Scholar
  76. 76.
    Kim U, Nishikura K (1993) Double-stranded RNA adenosine deaminase as a potential mammalian RNA editing factor. Seminars Cell Biol 4:285–293CrossRefGoogle Scholar
  77. 77.
    Lomeli H, Mosbacher J, Melcher T et al (1994) Control of kinetic properties of AMPA receptor channels by nuclear RNA editing. Science 266:1709–1713PubMedCrossRefGoogle Scholar
  78. 78.
    Dabiri GA, Lai F, Drakas RA, Nishikura K (1996) Editing of the GluR-B ion channel RNA in vitro by recombinant double-stranded RNA adenosine deaminase. EMBO J 15:34–45PubMedGoogle Scholar
  79. 79.
    Benne R (1996) The long and short of it. Nature 380:391–392PubMedCrossRefGoogle Scholar
  80. 80.
    Brownstein MJ (1994) Neuropeptides. In: Siegel GJ, Agranoff BW, Albers R et al (eds) Basic Neurochemistry, 5th edn. Raven Press, New YorkGoogle Scholar
  81. 81.
    Wickman KD, Clapham DE (1995) G-protein regulation of ion channels. Curr Opin Neurobiol 5:278–285PubMedCrossRefGoogle Scholar
  82. 82.
    Zimmerman AL (1995) Cyclic nucleotide gated channels. Curr Opin Neurobiol 5, 296–303PubMedCrossRefGoogle Scholar
  83. 83.
    Hamm HE, Gilchrist A (1996) Heterotrimeric G proteins. Curr Opin Cell Biol 8:189–196PubMedCrossRefGoogle Scholar
  84. 84.
    Clapham DE (1996) The G-protein nanomachine. Nature 379:297–299PubMedCrossRefGoogle Scholar
  85. 85.
    Logothetis DE, Kurachi Y, Galper J et al (1987) The (3y subunits of GTP-binding proteins activate the muscarinic K+ channel in heart. Nature 325:321–326PubMedCrossRefGoogle Scholar
  86. 86.
    Clapham DE, Neer EJ (1993) New roles for G-protein py-dimers in transmembrane signalling. Nature 365:403–406PubMedCrossRefGoogle Scholar
  87. 87.
    Schrebmayer W, Dessauer CW, Vorobiov D et al (1996) Inhibition of an inwardly rectifying K+ channel by G-protein a-subunits. Nature 380:624–627CrossRefGoogle Scholar
  88. 88.
    Lefkowitz RJ (1993) G protein-coupled receptor kinases. Cell 74:409–412PubMedCrossRefGoogle Scholar
  89. 89.
    Wilson CJ, Applebury ML (1993) Arresting G-protein-coupled receptor activity. Current Biol 3:683–686CrossRefGoogle Scholar
  90. 90.
    Koelle MR, Horvitz HR (1996) EGL-10 regulates G protein signalling in the C.elegans nervous system and shares a conserved domain with many mammalian proteins. Cell 84: 115–125PubMedCrossRefGoogle Scholar
  91. 91.
    Siderovski DP, Hessel A, Chung S et al (1996) A new family of regulators of G-protein-coupled receptors? Current Biol 6:211–212CrossRefGoogle Scholar
  92. 92.
    Wan Y, Kurosaki T, Huang XY (1996) Tyrosine kinases in activation of the MAP kinase cascade by G protein-coupled receptors. Nature 380:541–544PubMedCrossRefGoogle Scholar
  93. 93.
    van Corven E, Hordijk PL, Medema RH et al (1993) Pertussis toxin-sensitive activation of p21ras by G protein-coupled receptor agonists in fibroblasts. Proc Natl Acad Sci USA 90:1257–1261PubMedCrossRefGoogle Scholar
  94. 94.
    Takata M, Sabe H, Hata A et al (1994) Tyrosine kinases Lyn and Syk regulate B cell receptor-coupled Ca2+ mobilization through distinct pathways. EMBO J 13:1341–1349PubMedGoogle Scholar
  95. 95.
    van Biesen T, Hawes BE, Luttrell DK et al (1995) Receptor-tyrosine-kinase- and G(3y-mediated MAP kinase activation by a common signalling pathway. Nature 376:781–784PubMedCrossRefGoogle Scholar
  96. 96.
    Karin M, Hunter T (1995) Transcriptional control by protein phosphorylation: signal transmission from the cell surface to the nucleus. Current Biol 5:747–757CrossRefGoogle Scholar
  97. 97.
    Cahill MA, Janknecht R, Nordheim A (1996) Signalling pathways: jack of all cascades. Current Biol 6:16–19CrossRefGoogle Scholar
  98. 98.
    Ihle JN (1996) STATs and MAPKs: obligate or opportunistic partners in signalling. BioEssays 18:95–98PubMedCrossRefGoogle Scholar
  99. 99.
    Chrivia JC, Kwok RP, Lamb N et al (1993) Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature 365:855–859PubMedCrossRefGoogle Scholar
  100. 100.
    Saltiel AR, Decker SJ (1994) Cellular mechanisms of signal transduction for neurotrophins. BioEssays 16:405–411PubMedCrossRefGoogle Scholar
  101. 101.
    Lo DC (1996) Neurotrophic factors and synaptic plasticity. Neuron 15:979–981CrossRefGoogle Scholar
  102. 102.
    Songyang Z, Cantley LC (1995) Recognition and specificity in protein tyrosine kinase-mediated signalling. Trends Biochem Sci 20:470–475PubMedCrossRefGoogle Scholar
  103. 103.
    Wandless TJ (1996) SH2 domains: a question of independence. Curr Biol 6:125–127PubMedCrossRefGoogle Scholar
  104. 104.
    Hunter T (1995) Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signalling. Cell 80:225–236PubMedCrossRefGoogle Scholar
  105. 105.
    Finkbeiner S, Greenberg ME (1996) Ca2+-dependent routes to Ras: mechanisms for neuronal survival, differentiation, and plasticity? Neuron 16:233–236PubMedCrossRefGoogle Scholar
  106. 106.
    Kang H, Schuman EM (1995) Long-lasting neurotrophin-induced enhancement of synaptic transmission in the adult hippocampus. Science 267:1658–1662PubMedCrossRefGoogle Scholar
  107. 107.
    Weiner N, Molinoff PB (1994) Catecholamines. In: Siegel GJ, Agranoff BW, Albers R et al (eds) Basic Neurochemistry, 5th edn. Raven Press, New YorkGoogle Scholar
  108. 108.
    Hebb DO (1949) The organization of behavior: a neuropsychological theory. Wiley ed, New YorkGoogle Scholar
  109. 109.
    Sossin WS (1996) Mechanisms for the generation of synapse specificity in long-term memory: the implications of a requirement for transcription. Trends Neurosci 19:215–218PubMedCrossRefGoogle Scholar
  110. 110.
    Schulman H (1995) Protein phosphorylation in neural plasticity and gene expression. Curr Opin Neurobiol 5:375–381PubMedCrossRefGoogle Scholar
  111. 111.
    Bliss TVP, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39PubMedCrossRefGoogle Scholar
  112. 112.
    Carew TJ (1996) Molecular enhancement of memory formation. Neuron 16:5–8PubMedCrossRefGoogle Scholar
  113. 113.
    Quinlan E, Halpain S (1996) Postsynaptic mechanisms for bidirectional control of MAP2 phosphorylation by glutamate receptors. Neuron 16:357–368PubMedCrossRefGoogle Scholar
  114. 114.
    Malenka RC (1994) Synaptic plasticity in the hippocampus: LTP and LTD. Cell 78:535–538PubMedCrossRefGoogle Scholar
  115. 115.
    Neven D, Zucker RS (1996) Postsynaptic levels of [Ca2+]i needed to trigger LTD and LTP. Neuron 16:619–629CrossRefGoogle Scholar
  116. 116.
    Muller U (1996) Inhibition of nitric oxide synthase impairs a distinct form of long-term memory in the honeybee, apis mellifera. Neuron 16:541–549PubMedCrossRefGoogle Scholar
  117. 117.
    Yin J, Wallach JS, Del Vecchio M et al (1994) Induction of dominant negative CREB transgene specifically blocks long-term memory in Drosophila. Cell 79:49–58PubMedCrossRefGoogle Scholar
  118. 118.
    Steward O, Banker GA (1992) Getting the message from the gene to the synapse: sorting and intracellular transport of RNA in neurons. Trends Neurosci 15:180–186PubMedCrossRefGoogle Scholar
  119. 119.
    Ferrandon D, Elpick L, Nusslein-Volhard C et al (1994) Staufen protein associates with the 3′-UTR of bicoid mRNA to form particle that move in a microtubule-dependent manner. Cell 79:1221–1232PubMedCrossRefGoogle Scholar
  120. 120.
    Steward O (1995) Targeting of mRNAs to susynaptic microdomains in dendrites. Curr Opin Neurobiol 5:55–61PubMedCrossRefGoogle Scholar
  121. 121.
    Davis KL, Kahn RS, Ko G et al (1991) Dopamine in schizophrenia: a review and reconceptualization. Am J Psychiat 148:1474–1486PubMedGoogle Scholar
  122. 122.
    Niznik HB, Van Tol HH (1992) Dopamine receptor genes: new tool for molecular psychiatry. J Psychiatry Neurosci 17:158–190PubMedGoogle Scholar
  123. 123.
    Lindvall O, Odin P (1994) Clinical application of cell transplantation and neurotrophic factors in CNS disorders. Curr Opin Neurobiol 4:752–757PubMedCrossRefGoogle Scholar
  124. 124.
    Kraus JE, McNamara JO (1995) Clinical relevance of defects in signalling pathways. Curr Opin Neurobiol 5:358–366PubMedCrossRefGoogle Scholar
  125. 125.
    Keating MT, Sanguinetti MC (1996) Pathophysiology of ion channel mutations. Curr Opin Genet Dev 6:326–333PubMedCrossRefGoogle Scholar
  126. 126.
    Cannon SC, Brown RH Jr, Corey DP (1991) A sodium channel defect in hyperkalemic periodic paralysis: potassium-induced failure of inactivation. Neuron 6:619–626PubMedCrossRefGoogle Scholar
  127. 127.
    Fontaine B, Vale-Santos JM, Jurkat-Rott K et al (1994) Mapping of the hypokalemic periodic paralysis (HypoPP) locus to chromosome lq31–32 in three European families. Nature Genet 6:267–272PubMedCrossRefGoogle Scholar
  128. 128.
    Shiang R, Ryan SG, Zhu YZ et al (1993) Mutations in the al subunit of the inhibitory glycine receptor cause the dominant neurologic disorder, hyperekplexia. Nature Genet 5:351–358PubMedCrossRefGoogle Scholar
  129. 129.
    Rogers SW, Andrews PI, Gahring LC et al (1994) Autoantibodies to glutamate receptor GluR3 in Rasmussen’s encephalitis. Science 265:648–651PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 1997

Authors and Affiliations

  • G. Savettieri
  • A. Cestelli
  • I. Di Liegro

There are no affiliations available

Personalised recommendations