ARDS Lung: Homogeneous or Non-Homogeneous Impairment?

  • P. Pelosi
  • L. Brazzi
  • I. Ravagnan
Conference paper


The adult respiratory distress syndrome (ARDS) is classically regarded as a diffuse inflammatory lung disease. Recent computerized tomography (CT scan) studies, however, provided the evidence that in ARDS patients the lung lesions (densities at CT scan) are not homogeneously distributed throughout the lung parenchyma [1–3]. In most patients, though not in all of them, the lesions are preferentially located in the dependent regions of the lung, at least in supine position. These findings raise at least three types of questions:
  1. 1.

    is ARDS a really diffuse lung injury and, if so, why are lesions not homogeneously distributed?

  2. 2.

    what is the diagnostic and prognostic value of the assessment of respiratory mechanics in patients with ARDS if the lung is not homogeneously affected?

  3. 3.

    what is the impact of the different kinds of respiratory support on a dishomogeneous lung?



Respiratory Failure Lung Volume Acute Respiratory Failure Respir Crit Adult Respiratory Distress Syndrome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gattinoni L, Mascheroni D, Torresin A et al (1986) Morphological response to positive end expiratory pressure in acute respiratory failure. Computerized tomography study. Intensive Care Med 12:137–142PubMedCrossRefGoogle Scholar
  2. 2.
    Maunder RJ, Schuman WP, McHugh JW et al (1986) Preservation of normal lung region in the adult respiratory distress syndrome. Analysis by computed tomography. JAMA 255: 2463–2465PubMedCrossRefGoogle Scholar
  3. 3.
    Gattinoni L, Pesenti A, Torresin A et al (1986) Adult respiratory distress syndrome profiles by computed tomography. J Thorac Imag 1:25–30CrossRefGoogle Scholar
  4. 4.
    Pelosi P, D’Andrea L, Vitale G et al (1994) Vertical gradient of regional lung inflation in adult respiratory distress syndrome. Am Rev Respir Dis 149:8–13CrossRefGoogle Scholar
  5. 5.
    Sandiford P, Province MA, Schuster DP (1995) Distribution of regional density and vascular permeability in the adult respiratory distress syndrome. Am J Respir Crit Care Med 151: 737–742PubMedCrossRefGoogle Scholar
  6. 6.
    Milne ENC (1986) A physiological approach to reading critical care unit films. J Thorac Imaging 1:60–90PubMedCrossRefGoogle Scholar
  7. 7.
    Staub NC (1988) New concepts about the pathophysiology of pulmonary oedema. J Thorac Imaging 3:8–14PubMedCrossRefGoogle Scholar
  8. 8.
    Jones T, Jones HA, Rhodes CG et al (1976) Distribution of extravascular fluid volume in isolated perfused lungs measured with H20. J Clin Invest 57:706–713PubMedCrossRefGoogle Scholar
  9. 9.
    Hales CA, David JK, Ahluwalia B et al (1981) Regional oedema formation in isolated perfused dogs lungs. Circ Res 48:121–127PubMedCrossRefGoogle Scholar
  10. 10.
    Bone RC (1976) Diagnosis of causes for acute respiratory distress by pressure-volume curves. Chest 70:740–746PubMedCrossRefGoogle Scholar
  11. 11.
    Mancebo J, Benito S, Net A (1988) Value of static pulmonary compliance in predicting mortality in patients with acute respiratory failure. Intensive Care Med 14:110–114PubMedCrossRefGoogle Scholar
  12. 12.
    Gattinoni L, Pesenti A, Caspani ML et al (1984) The role of static lung compliance in the management of severe ARDS unresponsive to conventional treatment. Intensive Care Med 10: 121–126PubMedCrossRefGoogle Scholar
  13. 13.
    Rossi A, Gottfried SB, Zocchi L et al (1985) Measurement of static compliance of total respiratory system in patients with acute respiratory failure during mechanical ventilation. Am Rev Respir Dis 131:672–677PubMedGoogle Scholar
  14. 14.
    Pelosi P, Cereda M, Foti G et al (1995) Alterations of lung and chest wall mechanics in patients with acute lung injury: effects of positive end-expiratory pressure. Am J Respir Crit Care Med 152:531–537PubMedCrossRefGoogle Scholar
  15. 15.
    Gattinoni L, Bombino M, Pelosi P et al (1994) Lung structure and function in different stages of severe adult respiratory distress syndrome. JAMA 271:1772–1779PubMedCrossRefGoogle Scholar
  16. 16.
    Gattinoni L, Pesenti A, Avalli L et al (1987) Pressure-volume curve of total respiratory system in acute respiratory failure. Computed tomographic scan study. Am Rev Respir Dis 136:730–736PubMedCrossRefGoogle Scholar
  17. 17.
    Polese G, Rossi A, Appendini L et al (1991) Partitioning of respiratory mechanics in mechanically ventilated patients. J Appl Physiol 71:2425–2433PubMedGoogle Scholar
  18. 18.
    Katz JA, Zinn SE, Ozanne GM et al (1981) Pulmonary, chest wall and lung-thorax elastances in acute respiratory failure. Chest 80:304–311PubMedCrossRefGoogle Scholar
  19. 19.
    Jardin F, Genevray B, Brun-Ney D et al (1985) Influence of lung and chest wall compliances on transmission of airway pressure to the pleural space in critically ill patients. Chest 88: 653–658PubMedCrossRefGoogle Scholar
  20. 20.
    Mutoh T, Lamm WJE, Hildebrandt J et al (1991) Abdominal distention alters regional pleural pressures and chest wall mechanics in pigs in vivo. J Appl Physiol 70:2611–2618PubMedGoogle Scholar
  21. 21.
    Bates JHT, Rossi A, Milic-Emili J (1985) Analysis of the behaviour of the respiratory system with constant inspiratory flow. J Appl Physiol 58:1840–1848PubMedGoogle Scholar
  22. 22.
    Wright P, Ishihara Y, Bernard GR (1988) Effects of nitroprusside on lung mechanics and hemodynamics after endotoxemia in awake sheep. J Appl Physiol 64:2026–2032PubMedCrossRefGoogle Scholar
  23. 23.
    Snapper JR, Hutchinson AA, Ogletree M et al (1983) Effects of cyclooxygenase inhibitors on the alterations in lung mechanics caused by endotoxemia in the unanesthetized sheep. J Clin Invest 72:63–76PubMedCrossRefGoogle Scholar
  24. 24.
    Pelosi P, Croci M, Pesenti A (1996) Airway resistance and bronchodilator responsiveness in ARDS. In: Vincent JL (ed) Yearbook of Intensive Care and Emergency Medicine, pp 487–498CrossRefGoogle Scholar
  25. 25.
    Bernasconi M, Ploysongsang Y, Gottfried SB et al (1988) Respiratory compliance and resistance in mechanically ventilated patients with acute respiratory failure. Intensive Care Med 14:547–553PubMedCrossRefGoogle Scholar
  26. 26.
    Tantucci C, Corbeil C, Chasse M et al (1992) Flow and volume dependence of respiratory system flow resistance in patients with adult respiratory distress syndrome. Am Rev Respir Dis 145:355–360PubMedCrossRefGoogle Scholar
  27. 27.
    Eissa NT, Ranieri VM, Corbeil C et al (1992) Effects of PEEP on the mechanics of the respiratory system in ARDS patients. J Appl Physiol 73:1728–1738PubMedGoogle Scholar
  28. 28.
    Gattinoni L, Pelosi P, Crotti S et al (1995) Effects of PEEP on regional distribution of tidal volume and recruitment in patients with adult respiratory distress syndrome. Am J Respir Crit Care Med 151:1807–1814PubMedCrossRefGoogle Scholar
  29. 29.
    Gattinoni L, D’Andrea L, Pelosi P et al (1993) Regional effects and mechanism of positive end expiratory pressure in early Adult Respiratory Distress Syndrome. JAMA 269:2122–2127PubMedCrossRefGoogle Scholar
  30. 30.
    Langer M, Mascheroni D, Marcolin R et al (1988) The prone position in ARDS patients: a clinical study. Chest 94:103–107PubMedCrossRefGoogle Scholar
  31. 31.
    Gattinoni L, Pelosi P, Valenza F et al (1994) Patient positioning in acute respiratory failure. In: Tobin MJ (ed) Principles and practice of mechanical ventilation. Mc-Graw Hill, New York, pp 259–303Google Scholar
  32. 32.
    Gattinoni L, Pelosi P, Vitale G et al (1991) Body position changes redistribute lung computed tomographic densities in patients with acute respiratory failure. Anesthesiology 74:15–23PubMedCrossRefGoogle Scholar
  33. 33.
    Manning HL (1994) Peak airway pressure: why the fuss. Chest 105:242–247PubMedCrossRefGoogle Scholar
  34. 34.
    Muscedere JG, Mullen JBM, Gan K et al (1994) Tidal ventilation at low airway pressures can augment lung injury. Am J Respir Crit Care Med 149:1327–1334PubMedCrossRefGoogle Scholar
  35. 35.
    Hickling KG, Henderson SJ, Jackson R (1990) Low mortality associated with low volume pressure limited ventilation with permissive hypercapnia in severe ARDS. Intensive Care Med 16:372–377PubMedCrossRefGoogle Scholar
  36. 36.
    Amato MBP, Barbas CSV, Medeiros DM et al (1995) Beneficial effects of the “open lung approach” with low distenting pressures in acute respiratory distress syndrome. Am J Respir Crit Care Med 152:1835–1846PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 1997

Authors and Affiliations

  • P. Pelosi
  • L. Brazzi
  • I. Ravagnan

There are no affiliations available

Personalised recommendations