Monitoring of the Body Circulation — an Introduction

  • G. Martinelli
  • M. Nastasi
  • F. Petrini
Conference paper


Recently, Gattinoni et al. [1] — in the “SvO2 study” — showed that the manipulation of haemodynamics to values higher than physiological ones does not lead to any improvement in prognosis. The Authors’ opinion is that the ability to increase cardiac output is more an index of the physiological reserve and overall gravity rather than a rational treatment target. In this study, the mortality rate is lower when the physiological reserve is high, but increasing the haemodynamics in patients with low or normal physiological reserve up to supranormal values does not change either the final outcome or the morbidity in survivors. On this ground, the Authors affirm that the solution to the potential problem of tissue hypoxia does not appear to be an artificial increase in the total oxygen transport.


Pulmonary Capillary Wedge Pressure Physiological Reserve Intrathoracic Blood Volume Splanchnic Ischaemia Splanchnic Oxygen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gattinoni L, Brazzi L, Pelosi P et al (1995) A trial of goal-oriented hemodinamic therapy in critically ill patients. N Engl J Med 333:1025–1032PubMedCrossRefGoogle Scholar
  2. 2.
    Dantzker DR (1993) Adequacy of tissue oxygenation. Crit Care Med 21:S40–S43PubMedCrossRefGoogle Scholar
  3. 3.
    Fiddian-Green RG (1991) Should measurements of tissue pH and PO2 be included in the routine monitoring of intensive care unit patients? Crit Care Med 19:141–143PubMedCrossRefGoogle Scholar
  4. 4.
    Fiddian-Green RG (1993) Associations between intramucosal acidosis in the gut and organ failure. Crit Care Med 21:S103-S107PubMedCrossRefGoogle Scholar
  5. 5.
    Grum CM (1993) Tissue oxygenation in low flow states and during hypoxemia. Crit Care Med 21:S44–S49PubMedCrossRefGoogle Scholar
  6. 6.
    Haglund U, Fiddian-Green RG (1989) Assessment of adequate tissue oxygenation in shock and critical illness: oxygen transport in sepsis. Intens Care Med 15:475–477CrossRefGoogle Scholar
  7. 7.
    Gutierrez G, Bismar H, Dantzker DR et al (1992) Comparison of gastric intramucosal pH with measures of oxygen transport and consumption in critically ill patients. Crit Care Med 20:451–457PubMedCrossRefGoogle Scholar
  8. 8.
    Fiddian-Green RG (1989) Studies in splanchnic ischaemia and multiple organ failure. In: Marston A, Bulkley GB, Fiddian-Green RG, Haglund U (eds) Splanchnic ischaemia and multiple organ failure. Edward Arnold, CV Mosby, London, pp 349–363Google Scholar
  9. 9.
    Martinelli G, Baroncini S, Faenza S et al (1994) Esistono nuove metodiche per la valutazione del paziente critico? Minerva Anestesiol 60[Suppl 1]:211–240Google Scholar
  10. 10.
    Fiddian-Green RG (1992) Tonometry: theory and applications. Intensive Care World 9:60–65PubMedGoogle Scholar
  11. 11.
    Haglund U, Arvidsson S (1990) Gastrointestinal involvement in shock and sepsis. In: Aasen AO, Risber B (eds) Surgical pathophysiology. Harwood Academic Publishers, London, pp 363–382Google Scholar
  12. 12.
    Reilly PM, Bulkley GB (1993) Vasoactive mediators and splanchnic perfusion. Crit Care Med 21:S55–S68PubMedCrossRefGoogle Scholar
  13. 13.
    Fiddian-Green RG, Haglund U, Gutierrez G et al (1993) Goals for the resuscitation of shock. Crit Care Med 21:S25-S31PubMedCrossRefGoogle Scholar
  14. 14.
    Vincent JL (1995) End-points of resuscitation: arterial blood pressure, oxygen delivery, blood lactate or...? Intens Care Med 22:3–5CrossRefGoogle Scholar
  15. 15.
    Friedman G, Berlot G, Kahn RJ et al (1995) Combined measurement of blood lactate levels and gastric intramucosal pH in patients with severe sepsis. Crit Care Med 23:1184–1193PubMedCrossRefGoogle Scholar
  16. 16.
    Gutierrez G, Palizas F, Doglio G et al (1992) Gastric intramucosal pH as a therapeutic index of tissue oxygenation in critically ill patients. Lancet 339:195–199PubMedCrossRefGoogle Scholar
  17. 17.
    Marik PE (1993) Gastric intramucosal pH: a better predictor of multiorgan dysfunction syndrome and death than oxygen-derived variables in patients with sepsis. Chest 104:225–229PubMedCrossRefGoogle Scholar
  18. 18.
    Wang P, Ba ZF, Chaudry IH (1991) Hepatic extraction of indocyanine green is depressed early in sepsis despite increased hepatic blood flow and cardiac output. Arch Surg 126:219–224PubMedCrossRefGoogle Scholar
  19. 19.
    Smithies M, Yee TH, Jackson L et al (1994) Protecting the gut and the liver in the critically ill: effects of dopexamine. Crit Care Med 22:789–795PubMedCrossRefGoogle Scholar
  20. 20.
    Maynard N, Smithies MN, Mason B et al (1992) Dopexamine and gastric intramucosal pH in critically ill patients. Intens Care Med 18:134Google Scholar
  21. 21.
    Trinder TJ, Lavery GG, Fee JPH et al (1995) Correction of splanchnic oxygen deficit in the intensive care unit: dopexamine and colloid versus placebo. Anaesth Intens Care 23:178–182Google Scholar
  22. 22.
    Parviainen I, Ruokonen E, Takala J (1995) Dobutamine-induced dissociation between changes in splanchnic blood flow and gastric intramucosal pH after cardiac surgery. Brit J Anaesth 74: 277–282PubMedCrossRefGoogle Scholar
  23. 23.
    Uusaro A, Ruokonen E, Takala J (1996) Splanchnic oxygen transport after cardiac surgery: evidence for inadequate tissue perfusion after stabilization of hemodynamics. Intens Care Med 22:26–33CrossRefGoogle Scholar
  24. 24.
    Gutierrez G, Clark C, Brown SD et al (1994) Effect of dobutamine on oxygen consumption and gastric intramucosal pH in septic patients. Am J Respir Crit Care Med 150:324–329PubMedCrossRefGoogle Scholar
  25. 25.
    Radermacher P, Buhl R, Santak B et al (1995) The effects of prostacyclin on gastric intramucosal pH in patients with septic shock. Intens Care Med 21:414–421CrossRefGoogle Scholar
  26. 26.
    Reinhart K, Spies CD, Meier-Hellmann A et al (1995) N-acetylcysteine preserves oxygen consumption and gastric mucosal pH during hyperoxic ventilation. Am J Respir Crit Care Med 151:773–779PubMedCrossRefGoogle Scholar
  27. 27.
    Deitch EA (1990) The role of intestinal barrier failure and bacterial translocation in the development of systemic infection and multiple organ failure. Arch Surg 125:403–405PubMedCrossRefGoogle Scholar
  28. 28.
    Mythen MG, Webb AR (1994) The role of gut mucosal hypoperfusion in the pathogenesis of post-operative organ dysfunction. Intens Care Med 20:203–209CrossRefGoogle Scholar
  29. 29.
    Myten MG, Webb AR (1995) Perioperative plasma volume expansion reduces the incidence of gut mucosal hypoperfusion during cardiac surgery. Arch Surg 130:423–429CrossRefGoogle Scholar
  30. 30.
    Shippy CR, Appel RL, Shoemaker WC (1984) Reliability of clinical monitoring to assess blood volume in critically ill patients. Crit Care Med 12:107–112PubMedCrossRefGoogle Scholar
  31. 31.
    Hedenstierna G (1992) What value does the recording of intrathoracic blood volume have in clinical practice? Intens Care Med 18:137–138CrossRefGoogle Scholar
  32. 32.
    Hoeft A (1995) Transpulmonary indicator dilution: an alternative approach to hemodynamic monitoring. In: Vincent JL (ed) Yearbook of Intensive Care and Emergency Medicine. Springer, Berlin Heidelberg New York, pp 593–605CrossRefGoogle Scholar
  33. 33.
    Lichtwarck-Aschoff M, Zeravik J, Pfeiffer UJ (1992) Intrathoracic blood volume accurately reflects circulatory volume status in critically ill patients with mechanical ventilation. Intens Care Med 18:142–147CrossRefGoogle Scholar
  34. 34.
    Nastasi M, Bernardi E, Cattabriga I et al (1994) Correlations between cardiac output and parameters in a group of critically ill patients. Crit Care Med 5[Suppl]:32Google Scholar

Copyright information

© Springer-Verlag Italia 1997

Authors and Affiliations

  • G. Martinelli
  • M. Nastasi
  • F. Petrini

There are no affiliations available

Personalised recommendations