Choice of Pharmacological Agents in Hypoperfusion Syndrome

  • J.-L. Vincent
  • E. Silva
Conference paper


Hypoperfusion syndrome is manifest by signs of altered tissue perfusion, and clinically recognised by decreased urine output, poor skin perfusion, and altered mental alertness. Hypoperfusion can be associated with a low cardiac output (as in heart failure) or a low blood pressure (as in circulatory shock) due to heart failure or other problems. When severe, hypoperfusion syndrome leads to altered cellular metabolism and shock, associated with raised blood lactate levels. Shock can be categorized into four classical forms based on the pathophysiologic alterations: hypovolemic, cardiogenic, obstructive, and distributive (septic), although many patients will have a mixture of several types. Hypoperfusion limits tissue oxygen availability and threatens cellular and hence organ function. Treatments to improve and maintain blood flow are therefore a priority in the care of the critically ill patient. While pharmacological agents have an important place in this strategy, the basics of resuscitation must not be forgotten. Fluid administration must be optimized to correct hypovolemia. If hypotension persists despite adequate fluid replacement, vasopressors will be necessary to restore a minimal tissue perfusion pressure. Vasoconstrictors may help to redistribute blood to more vital organs but excessive vasoconstriction can be harmful, by increasing peripheral resistance and reducing cardiac output. Capillary blood flow may also be compromized, increasing tissue hypoxia.


Septic Shock Septic Shock Patient Splanchnic Blood Flow Gastric Mucosal Blood Flow Adrenergic Agent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Julou-Schaeffer G, Gray GA, Fleming I et al (1990) Loss of vascular responsiveness induced by endotoxin involves L-arginine pathway. Am J Physiol 259:H1038-H1043Google Scholar
  2. 2.
    Boillot A, Massol J, Maupoil V et al (1996) Alterations of myocardial and vascular adrenergic receptor-mediated responses in Escherichia coli-induced septic shock in the rat. Crit Care Med 24:1373–1423PubMedCrossRefGoogle Scholar
  3. 3.
    Vincent JL, Roman A, Kahn RJ (1990) Dobutamine administration in septic shock: Addition to a standard protocol. Crit Care Med 18:689–693PubMedCrossRefGoogle Scholar
  4. 4.
    Vincent JL, Reuse C, Kahn RJ (1989) Administration of dopexamine, a new adrenergic agent, in cardiorespiratory failure. Chest 96:1233–1236PubMedCrossRefGoogle Scholar
  5. 5.
    Preiser JC, Armistead CW, Le Minh T et al (1989) Increase in oxygen supply during experimental septic shock: The effects of dobutamine versus dopexamine. J Crit Care 4:40–44CrossRefGoogle Scholar
  6. 6.
    Barton P, Garcia J, Kouatli A et al (1996) Hemodynamic effects of iv milrinone lactate in pediatric patients with septic shock. Chest 109:1302–1312PubMedCrossRefGoogle Scholar
  7. 7.
    De Boelpaepe C, Vincent JL, Contempre B et al (1989) Combination of norepinephrine and amrinone in the treatment of endotoxin shock. J Crit Care 4:202–207CrossRefGoogle Scholar
  8. 8.
    Vincent JL, Carlier E, Berré J et al (1988) Administration of enoximone in cardiogenic shock. Am J Cardiol 62:419–423PubMedCrossRefGoogle Scholar
  9. 9.
    Bund M, Sultz W, Kirchner E (1995) Is preventive perioperative dopamine administration of value? Anesthesiol Reanim 20:76–81Google Scholar
  10. 10.
    Duke GJ, Briedis JH, Weaver RA (1994) Renal support in critically ill patients: Low-dose dopamine or low-dose dobutamine. Crit Care Med 22:1919–1925PubMedGoogle Scholar
  11. 11.
    Baumann G, Felix SB, Filcek SAL (1990) Usefulness of dopexamine hydrochloride versus dobutamine in chronic congestive heart failure and effects on hemodynamics and urine output. Am J Cardiol 65:748–754PubMedCrossRefGoogle Scholar
  12. 12.
    Welch M, Newstead CG, Smyth JV et al (1995) Evaluation of dopexamine hydrochloride as a renoprotective agent during aortic surgery. Ann Vasc Surg 9:488–492PubMedCrossRefGoogle Scholar
  13. 13.
    Bersten AD, Rutten AJ (1995) Renovascular interaction of epinephrine, dopamine, and intraperitoneal sepsis. Crit Care Med 23:537–544PubMedCrossRefGoogle Scholar
  14. 14.
    Mackay JH, Feerick AE, Woodson LC et al (1995) Increasing organ flow during cardiopulmonary bypass in pigs: comparison of dopamine and perfusion pressure. Crit Care Med 1090–1098Google Scholar
  15. 15.
    Leier CV (1988) Regional blood flow responses to vasodilators and inotropes in congestive heart failure. Am J Cardiol 62:86E-93ECrossRefGoogle Scholar
  16. 16.
    Mousdale S, Clyburn PA, Mackie AM et al (1988) Comparison of the effects of dopamine, dobutamine, and dopexamine on renal blood flow: a study in normal healthy volunteers. Br J Clin Pharmacol 25:555–560PubMedCrossRefGoogle Scholar
  17. 17.
    Marin C, Eon B, Saux P et al (1990) Renal effects of norepinephrine used to treat septic shock patients. Crit Care Med 18:282–285PubMedCrossRefGoogle Scholar
  18. 18.
    Fiddian-Green RG, Haglund U, Gutierrez G et al (1993) Goals for the resuscitation of shock. Crit Care Med 21:S25-S31CrossRefGoogle Scholar
  19. 19.
    Sakio H, Ohtsu S, Okuda C (1994) How should we treat intestinal ischemia? Effects of dobutamine and dopamine. Masui 43:1304–1309PubMedGoogle Scholar
  20. 20.
    Soong CV, Halliday MI, Hood JM et al (1995) Effect of low dose dopamine on sigmoid colonic intramucosal pH in patients undergoing elective abdominal aortic aneurysm repair. Br J Surg 82:912–915PubMedCrossRefGoogle Scholar
  21. 21.
    Gardeback M, Settergren G (1995) Dopexamine and dopamine in the prevention of low gastric mucosal pH following cardiopulmonary bypass. Acta Anaesthesiol Scand 39: 1066–1070PubMedCrossRefGoogle Scholar
  22. 22.
    Marik PE, Mohedin J (1994) The contrasting effects of dopamine and norepinephrine on systemic and splanchnic oxygen utilization in hyperdynamic sepsis. JAMA 272:1354–1357PubMedCrossRefGoogle Scholar
  23. 23.
    Ruokonen E, Takala J, Kari A et al (1993) Regional blood flow and oxygen transport in septic shock. Crit Care Med 21:1304–1311PubMedCrossRefGoogle Scholar
  24. 24.
    Meier-Hellmann A, Reinhart K (1994) Influence of catecholamines on regional perfusion and tissue oxygenation in septic shock patients. In: Reinhart K, Eyrich K, Sprung C. Sepsis. Current perspectives in pathophysiology and therapy. Springer, Berlin, pp 274–291Google Scholar
  25. 25.
    Maynard ND, Bihari DJ, Dalton RN et al (1995) Increasing splanchnic blood flow in the critically ill. Chest 108:1648–1654PubMedCrossRefGoogle Scholar
  26. 26.
    Neviere R, Mathieu D, Chagnon JL et al (1995) Effects of dobutamine and dopamine on gastric mucosal blood flow in septic patients. Am Rev Respir Crit Care Med 151:A446 (Abstract)Google Scholar
  27. 27.
    Smithies M, Yee TH, Jacson L et al (1994) Protecting the gut and the liver in the critically ill: effects of dopexamine. Crit Care Med 22:789–795PubMedCrossRefGoogle Scholar
  28. 28.
    Gutierrez G, Clark C, Brown SD et al (1994) Effect of dobutamine on oxygen consumption and gastric mucosal pH in septic patients. Am J Respir Crit Care Med 150:324–329PubMedCrossRefGoogle Scholar
  29. 29.
    De Backer D, Creteur J, Smail N et al (1996) Dobutamine increases hepatosplanchnic blood flow in septic patients. Am J Respir Crit Care Med 153:A125 (Abstract)Google Scholar
  30. 30.
    Reinelt H, Fischer G, Wiedeck H et al (1996) Effects of increased regional blood flow on splanchnic metabolism. Intensive Care Med 22:S75 (Abstract)CrossRefGoogle Scholar
  31. 31.
    Parviainen I, Ruokonen E, Takala J (1995) Dobutamine induced dissociation between changes in splanchnic blood flow and gastric intramucosal pH after cardic surgery. Br J Anaesth 74: 277–282PubMedCrossRefGoogle Scholar
  32. 32.
    Hussain SNA, Rutledge F, Roussos C et al (1988) Effects of norepinephrine and fluid administration on the selective blood flow distribution in endotoxic shock. J Crit Care 1:32–42CrossRefGoogle Scholar
  33. 33.
    Vincent JL, Colice G, Grover R et al (1995) The effects of 546C88 on left ventricular performance in patients with septic shock. Intensive Care Med 21:S20 (Abstract)Google Scholar
  34. 34.
    Preiser JC, Lejeune P, Roman A et al (1995) Methylene blue administration in septic shock: A clinical trial. Crit Care Med 23:259–264PubMedCrossRefGoogle Scholar
  35. 35.
    Zhang H, Spapen H, Nguyen DN et al (1994) Protective effects of N-acetylcysteine in endotoxemia. Am J Physiol 266:H1746-H1754Google Scholar
  36. 36.
    Spies CD, Reinhart K, Witt I et al (1994) Influence of N-acetylcysteine on indirect indicators of tissue oxygenation in septic shock patients: results from a prospective, randomized, doubleblind study. Crit Care Med 22:1738–1746PubMedGoogle Scholar
  37. 37.
    Zhang H, Spapen H, Manikis P et al (1995) Tirilazad mesylate (U74006F) inhibits the effects of endotoxin in dogs. Am J Physiol 268:H1847-H1855Google Scholar

Copyright information

© Springer-Verlag Italia 1997

Authors and Affiliations

  • J.-L. Vincent
  • E. Silva

There are no affiliations available

Personalised recommendations