Skip to main content
  • 186 Accesses

Abstract

Facing a patient presenting respiratory functional impairment, the physician is left with the task of running tests to determine whether there is a mechanical component to the illness. At this point he must be qualified to extract the desired information from a given measurement. Although not difficult to accomplish, the precise interpretation of the results demands awareness of exact methodological and theoretical concepts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fry DL (1960) Physiologic recording by modern instruments with particular reference to pressure recording. Physiol Rev 40:753–788

    PubMed  CAS  Google Scholar 

  2. Butler JP, Leith DE, Jackson AC (1986) Principles of measurement: applications to pressure, volume, and flow. In: Macklem PT, Mead J (eds) Handbook of physiology. The respiratory system. Mechanics of breathing. American Physiological Society, Bethesda, sect 3, vol III, pp 15–33

    Google Scholar 

  3. Behrakis PK, Higgs BD, Baydur A et al (1983) Respiratory mechanics during halothane anesthesia and anesthesia-paralysis in humans. J Appl Physiol 55:1085–1092

    PubMed  CAS  Google Scholar 

  4. Rocco PRM, Zin WA (1985) Modelling the mechanical effects of tracheal tubes on normal subjects. Eur Respir J 8:121–126

    Article  Google Scholar 

  5. Beauchamp K, Yuen C (1979) Digital methods for signal analysis. George Allen & Unwin, London

    Google Scholar 

  6. Milic-Emili J, Mead J, Turner JM et al (1964) Improved technique for estimating pleural pressure from esophageal balloons. J Appl Physiol 19:207–211

    PubMed  CAS  Google Scholar 

  7. Baydur A, Behrakis PK, Zin WA et al (1982) A simple method for assessing the validity of the esophageal balloon technique. Am Rev Respir Dis 126:788–791

    PubMed  CAS  Google Scholar 

  8. Otis AB, Fenn WO, Rahn H (1950) The mechanics of breathing in man. J Appl Physiol 2: 592–607

    PubMed  CAS  Google Scholar 

  9. Sharp JT, Henry JP, Sweany SK et al (1964) Total respiratory inertance and its gas and tissue components in normal and obese men. J Appl Physiol 43:503–509

    CAS  Google Scholar 

  10. Hantos Z, Daróczy B, Klebniczki J et al (1982) Parameter estimation of transpulmonary mechanics by a nonlinear inertive model. J Appl Physiol 52:955–963

    PubMed  CAS  Google Scholar 

  11. Bates JHT, Shardonofsky F, Stewart DE (1989) The low-frequency dependence of respiratory system resistance and elastance in normal dogs. Respir Physiol 78:369–382

    Article  PubMed  CAS  Google Scholar 

  12. Mead J, Whittenberger JL (1953) Physical properties of human lungs measured during spontaneous respiration. J Appl Physiol 5:779–796

    Google Scholar 

  13. Zin WA, Pengelly LD, Milic-Emili J (1982) Single-breath method for measurement of respiratory mechanics in anesthetized animals. J Appl Physiol 52:1266–1271

    PubMed  CAS  Google Scholar 

  14. Hughes R, May AJ, Widdicombe JG (1959) Stress relaxation in rabbits lungs. J Physiol (Lond) 146:85–97

    CAS  Google Scholar 

  15. Don HF, Robson JG (1965) The mechanics of the respiratory system during anesthesia. Anesthesiol 26:168–178

    Article  CAS  Google Scholar 

  16. Bates JHT, Rossi A, Milic-Emili J (1985) Analysis of the behavior of the respiratory system with constant inspiratory flow. J Appl Physiol 58:1840–1848

    PubMed  CAS  Google Scholar 

  17. Barnas GM, Yoshino K, Loring SH et al (1987) Impedance and relative displacements of relaxed chest wall up to 4 Hz. J Appl Physiol 62:71–81

    PubMed  CAS  Google Scholar 

  18. Brusasco V, Warner DO, Beck KC et al (1989) Partitioning of pulmonary resistance in dogs: effects of tidal volume and frequency. J Appl Physiol 66:1190–1197

    Article  PubMed  CAS  Google Scholar 

  19. Hantos Z, Daróczy B, Suki B et al (1986) Forced oscillatory impedance of the respiratory system at low frequencies. J Appl Physiol 60:123–132

    Article  PubMed  CAS  Google Scholar 

  20. Mount LE (1955) The ventilation flow-resistance and compliance of rat lungs. J Physiol (Lond) 127:157–167

    CAS  Google Scholar 

  21. Bates JHT, Brown KA, Kochi T (1989) Respiratory mechanics in the normal dog determined by expiratory flow interruption. J Appl Physiol 67:2276–2285

    PubMed  CAS  Google Scholar 

  22. Bates JHT, Ludwig MS, Sly PD et al (1988) Interrupter resistance elucidated by alveolar pressure measurements in open-chest normal dogs. J Appl Physiol 65:408–414

    PubMed  CAS  Google Scholar 

  23. Saldiva PHN, Zin WA, Santos RLB, et al (1992) Alveolar pressure measurement in open-chest rats. J Appl Physiol 72:302–306

    PubMed  CAS  Google Scholar 

  24. Kochi T, Okubo S, Zin WA et al (1988) Flow and volume dependence of pulmonary mechanics in anesthetized cats. J Appl Physiol 64:441–450

    PubMed  CAS  Google Scholar 

  25. Similovski T, Levy P, Corbeil C et al (1989) Viscoelastic behavior of lung and chest wall in dogs determined by flow interruption. J Appl Physiol 67:2219–2229

    Google Scholar 

  26. D’ Angelo E, Calderini E, Torri G et al (1989) Respiratory mechanics in anesthetizedparalyzed humans: effects of flow, volume, and time. J Appl Physiol 67:2556–2564

    PubMed  Google Scholar 

  27. Otis AB, McKerrow CB, Bartlett RA et al (1956) Mechanical factors in distribution of pulmonary ventilation. J Appl Physiol 8:427–443

    PubMed  CAS  Google Scholar 

  28. Mead J (1969) Contribution of compliance of airways to frequency-dependent behavior of lung. J Appl Physiol 26:670–673

    PubMed  CAS  Google Scholar 

  29. Hildebrandt J (1969) Dynamic properties of air-filled excised cat lung determined by liquid plethysmography. J Appl Physiol 27:246–250

    PubMed  CAS  Google Scholar 

  30. Hildebrandt J (1969) Comparison of mathematical models for cat lung and viscoelastic balloon derived by Laplace transform methods from pressure-volume data. Bull Math Biophys 31:651–667

    Article  PubMed  CAS  Google Scholar 

  31. Hildebrandt J (1970) Pressure-volume data of cat lung interpreted by a plastoelastic, linear viscoelastic model. J Appl Physiol 28:365–372

    PubMed  CAS  Google Scholar 

  32. Navajas D, Farré R, Cannet J et al (1990) Respiratory input impedance in anesthetized paralyzed patients. J Appl Physiol 69:1372–1379

    PubMed  CAS  Google Scholar 

  33. Shardonofsky F, Sato J, Bates JHT (1990) Quasi-static pressure-volume hysteresis in the canine respiratory system in vivo. J Appl Physiol 68:2230–2236

    PubMed  CAS  Google Scholar 

  34. Suki B, Bates JHT (1991) A nonlinear viscoelastic model of lung tissue mechanics. J Appl Physiol 71:826–833

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Italia

About this paper

Cite this paper

Zin, W.A. (1997). Theoretical Aspects of Respiratory Mechanics. In: Gullo, A. (eds) Anaesthesia, Pain, Intensive Care and Emergency Medicine — A.P.I.C.E.. Springer, Milano. https://doi.org/10.1007/978-88-470-2296-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2296-6_13

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-3-540-75032-1

  • Online ISBN: 978-88-470-2296-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics