Vestibulo-ocular Reflexes and Visuo-vestibular Interaction

  • L. M. Ödkvist
Conference paper


Human postural function uses afferent inflow from the inner ears, vision, pressure receptors in the soles of the feet, and proprioception in the extremities and back, especially the neck. Except for balancing and motor control the vestibular system plays a great role in ocular movements. The vestibular ocular reflex controlling eye movements is extremely quick and exact. The inner ear transduces the head movements and via the vestibulooculomotor reflex (VOR) the eyes are moved in such a way that the field of vision keeps steady on the retina. VOR is under the command of the central nervous system, especially the cerebellum and the prepontine reticular formation in the brain stem. The inflow from the neck plays an important role [11, 17, 22]. VOR elicits compensatory eye movements, i.e. the eye movements compensate for the head movements. The slow eye movement is regularly interrupted by a quick rebound phase and thus nystagmus appears with a slow and a fast phase. The slow phase has a speed of up to 60°/s, and the quick phase, the saccade, around 400°/s.


Smooth Pursuit Vestibular Nucleus Whiplash Injury Quick Phase Visual Suppression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ålund M, Ledin T, Ödkvist LM, Larsson S–E, Moller C (1993) Dynamic posturography among patients with common neck disorders. A study of 15 cases with suspected cervical vertigo. J Vestibular Res 3:383–389Google Scholar
  2. 2.
    Depondt M (1974) Le nystagmus d’origine cervicale. Acta Otorhinolaryng, Belg 28:759Google Scholar
  3. 3.
    Henriksson NG, Hindfelt B, Pyykkö I, Schalén L (1981) Rapid eye movements reflecting neurological disorders. Clin Otolaryngol 6(2): 111–119PubMedCrossRefGoogle Scholar
  4. 4.
    Hildingsson C, Wenngren BI, Bring G, Toolanen G (1989) Oculomotor problems after cervical spine injury. Acta Orthop Scand 60:513–516PubMedCrossRefGoogle Scholar
  5. 5.
    Hildingsson C, Wenngren BI, Toolanen G (1993) Eye motility dysfunction after soft–tissue injury of the cervical spine. Acta Orthop Scand 64(2): 129–132PubMedCrossRefGoogle Scholar
  6. 6.
    Hinoki M (1985) Vertigo due to whiplash injury: a neurotological approach. Acta Otolaryngol, Stockh [Suppl 419]:9–29Google Scholar
  7. 7.
    Hydén D, Larsby B, Ödkvist LM (1984) Quantification of compensatory eye movements in light and darkness. Acta Otolaryngol, Stockh [Suppl 406]:209–211Google Scholar
  8. 8.
    Ikeda K, Kobayashi T (1967) Mechanisms and origin of so–called whiplash injury. Clin Surg 22:1655–1660Google Scholar
  9. 9.
    Jongkees LB (1969) Cervical vertigo. Laryngoscope 79:1473PubMedCrossRefGoogle Scholar
  10. 10.
    Ledin T, Ödkvist LM, Vrethem M, Möller CG (1991) Dynamic posturography in assessment of polyneuropathic disease. J Vest Res 1:123–128Google Scholar
  11. 11.
    Liedgren SRC, Rubin AM, Aschan G, Ödkvist LM, Larsby B (1978) Influence of neck afferents on activity in the cat vestibular nuclei. In: Hood JD (eds). Vestibular mechanisms in health and disease. Academic Press, London 8:18–27Google Scholar
  12. 12.
    Liedgren SRC, Ödkvist L (1979) The morphological basis for vertigo of cervical orgin. Proc Neurootol Equilibr Soc, pp 153–165Google Scholar
  13. 13.
    Macnab I (1971) The “whiplash syndrome”. Orthop Clin North Am 2(2):389–403PubMedGoogle Scholar
  14. 14.
    Norris S H, Watt I (1983) The prognosis of neck injuries resulting from rear end vehicle collisions. J Bone Joint surg (Br) 65(5):608–611Google Scholar
  15. 15.
    Ödkvist LM (1988) Otoneurological diagnostics in posterior fossa lesions. Acta Otolaryngol, Stockh [Suppl 452]: 12–15CrossRefGoogle Scholar
  16. 16.
    Ödkvist LM, Larsby B, Fredrickson JM (1975) Projection of the vestibular nerve to the SI arm field in the cerebral cortex of the cat. Acta Otolaryngol, Stockh, 79:88–95CrossRefGoogle Scholar
  17. 17.
    Ödkvist LM, Liedgren SRC, Larsby B, Jerlvall L (1975) Vestibular and somatosensory inflow to the vestibular projection area in the postcruciate dimple region of the cat cerebral cortex. Exp Brain Res 22:185PubMedCrossRefGoogle Scholar
  18. 18.
    Ödkvist LM, Thell J, Larsby B (1988) A comparison between smooth pursuit and visual suppression. Adv Oto–Rhino–Laryngol 41:109–115Google Scholar
  19. 19.
    Ödkvist I, Ödkvist LM (1988) Physiotherapy in vertigo. Acta Otolaryngol, Stockh [Suppl 455]:74–76CrossRefGoogle Scholar
  20. 20.
    Ödkvist LM, Ålund M, Ledin T, Noaksson L, Moller C (1995) The role of posturography and electronystagmography in whiplash injuries. In: Proceedings of the XXIth ordinary meeting with the Neurotological and Equilibriometric Society, Hakone, JapanGoogle Scholar
  21. 21.
    Oosterveld WJ, Kortschot HW, Kingma G, de Jong HAA, Saatci MR (1991) Electronystagmographic findings following cervical whiplash injuries. Acta Otolaryngol, Stockh, 111:201–205CrossRefGoogle Scholar
  22. 22.
    Rubin A, Liedgren SRC, Ödkvist LM, Milne AC, Fredrickson JM (1978) Labyrinthine and somatosensory convergence upon vestibulo–ocular units. Acta Otolaryngol, Stockh, 85:54–62CrossRefGoogle Scholar
  23. 23.
    Schalén L, Henriksson N G, Pyykkö I (1982) Quantification of tracking eye movements in patients with neurological disorders. Acta Otolaryngol, Stockh, 93(5–6):387–395CrossRefGoogle Scholar
  24. 24.
    Wennmo C, Hindfelt B (1980) Eye movements in brainstem lesions. Acta Otolaryngol, Stockh, 90(3–4):230–236CrossRefGoogle Scholar
  25. 25.
    Wennmo C, Hindfelt B, Pyykkö I (1983) Eye movements in cerebellar and combined cerebello–brainstem diseases. Ann Otol Rhinol Laryngol 92(2): 165–171PubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia 1996

Authors and Affiliations

  • L. M. Ödkvist
    • 1
  1. 1.Department of OtolaryngologyUniversity HospitalLinköpingSweden

Personalised recommendations