Advertisement

Vagal Tone: How Important Is It in Triggering Atrial Fibrillation?

  • A. Capucci
  • G. Q. Villani
  • D. Aschieri
  • A. Rosi

Abstract

The parasympathetic nervous system modulates the electrophysiological properties of most structures involved in normal cardiac function and in experimental and human arrhythmias. However in vivo it is actually difficult to evaluate the pure vagal effect since sympatho-vagal interactions are specifically involved in modulating the electrophysiological parameters. The not universally accepted concept of dividing the atrial fibrillation episodes in vagal and sympathetic induced ones is mainly based on anecdotal cases and on clinical preselected models.

Keywords

Atrial Fibrillation Vagal Stimulation Vagal Tone Atrial Fibrillation Episode Vagal Modulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Armour JA, Hopkins DA (1984) Anatomy of the extrinsic efferent autonomic nerves and ganglia innervating the mammalian heart. In: Randall WC (ed) Nervous control of cardiovascular function. Oxford University Press, New York, pp 20 – 45Google Scholar
  2. 2.
    Armour JA (1991) Anatomy function of the intrathoracic neurons regulating the mammalian heart. In: Zucker IH, Gilmore JP (eds) Reflex control of the circulation. CRC Press, Boston, pp 1 – 37Google Scholar
  3. 3.
    Giraldo E, Vigano MA, Hammer R et al (1988) Characterization of muscarinic receptors in guinea pig ileum longitudinal smooth muscle. Mol Pharmacol 33: 617 – 625PubMedGoogle Scholar
  4. 4.
    Salata JJ, Jalife J (1985) “Fade” of hyperpolarizing responses to vagal stimulation at the sinus atrial and atrioventricular nodes of the rabbit heart. Circ Res 56:718–727Google Scholar
  5. 5.
    Di Francesco D, Tromba C (1987) Acetylcholine inhibits activation of the cardiac hyperpolaryzing-actived current If. Pflugers Arch 410: 139 – 142CrossRefGoogle Scholar
  6. 6.
    Lindemann JP, Watanabe AM (1985). Muscarinic colinergic inhibition of B-adrenergic stimulation of phospholamban phosphorylation and Ca transport in guinea pig ventricles. Biol Chem 260: 13122 – 13129Google Scholar
  7. 7.
    Alessie R, Nusynowits M, Abildskov Jamoe JK (1958) Nonuniform distribution of vagal effects on the atria refractory period. Am J Physiol 194: 406 – 410Google Scholar
  8. 8.
    Zipes DP, Mihalik MJ, Robbins GT (1974) Effects of selective vagal and stellate ganglion stimulation on atrial refractoriness. Cardiovascular Res 8: 647 – 655CrossRefGoogle Scholar
  9. 9.
    Tsuji H, Fujiki A, Tani M, Yoshida S, Sasayama S (1992) Quantitative relationship between atrial refractoriness and the dispersion of refractoriness in atrial vulnerability. PACE 15: 403 – 410PubMedCrossRefGoogle Scholar
  10. 10.
    Cooper T (1965) Terminal innervation of the heart. In: Randall WC (ed) Nervous control of the heart Williams & Wilkins, Baltimore, pp 55 – 59Google Scholar
  11. 11.
    Allessie MA,Bonke FIM, Scopman FJG (1977) The “leading circle” concept: a new model of circus movement in cardiac tissue without involvement of an anatomical obstacle. Circ Res 9: 41 – 52Google Scholar
  12. 12.
    Loomis TA, Captain MC, Stephen K (1955) Auricular fibrillation induced by acetylcholine or vagal stimulation. Circ Res 3: 390 – 396PubMedCrossRefGoogle Scholar
  13. 13.
    Burn JH, Gunning AJ, Walker JM (1956) The effects of KCl on atrial fibrillation caused by acetylcholine. Circ Res 4: 288 – 292PubMedCrossRefGoogle Scholar
  14. 14.
    Boyden PA, Hoffman BF (1981) The effects on atrial electrophysiology and structure of surgically induced right atrial enlargement in dog. Circ Res 49: 1319 – 1331PubMedCrossRefGoogle Scholar
  15. 15.
    Watanabe AM, Bailey JC, Lathrop D et al (1978) Acetylcholine antagonism of the cellular electrophysiologic effects of isoproterenol. In: Swartz PJ, Brown AM, Malliani A, Zanchetti A (eds) Neural mechanisms in cardiac arrhythmias. Raven Press, New York, pp 349 – 358Google Scholar
  16. 16.
    Coumel P, Attuel P, Lavallée JP et al (1978) Syndrome d’arythmie auriculaire d’origine vagale. Arch Mal Coeur 108: 1098 – 1108.Google Scholar
  17. 17.
    Murgatroy FD, Camm AJ (1992) Sinus rhythm, the autonomic nervous system, and quality of life. In: Kingma JM, van Hemel NM, Lie Kiet (eds) Atrial fibrillation: a treatable disease? Kluwer Academic Publishers, Dordrecht, pp 195 – 210CrossRefGoogle Scholar
  18. 18.
    Fuller JA, Adams GG, Buxton B (1989) Atrial fibrillation after coronary artery bypass grafting. Is it a disorder of the elderly? J Thorac Cardiovasc Surg 97: 821 – 825PubMedGoogle Scholar
  19. 19.
    Frost L, Molgaard EH, Christiansen EH et al (1995) Low vagal tone and supraventricular ectopic activity predict atrial fibrillation and flutter after coronary artery bypass grafting. Eur Heart J 16: 825 –; 831PubMedGoogle Scholar
  20. 20.
    Capucci A, Villani GQ, Nollo GD et al (1996) Ruolo del sistema nervoso autonomo nella fibrillazione atriale parossistica: trigger o target? G Ital Cardiol (suppl. 26 ): 58 (abstr)Google Scholar
  21. 21.
    Capucci A, Coccagna G, Bauleo S et al (1994) Nocturnal onset of paroxysmal atrial fibrillation is not due exclusively to a prevalent vagal tone. Eur Heart J (suppl. 15 ): 329 (abstr)Google Scholar

Copyright information

© Springer-Verlag Italia 1998

Authors and Affiliations

  • A. Capucci
    • 1
  • G. Q. Villani
    • 1
  • D. Aschieri
    • 1
  • A. Rosi
    • 1
  1. 1.Divisione di CardiologiaOspedale CivilePiacenzaItaly

Personalised recommendations