Since continuous hemofiltration was first described by Peter Kramer as a new form of renal replacement therapy, it has undergone a lot of changes, making it a widely accepted treatment for acute renal failure in critically ill patients. Concomitantly, new insights into the pathogenesis of severe sepsis and septic shock have led to a recent form of immunomodulating therapy for septic shock. In the past decade hemofiltration has gained more importance as a possible treatment of severe sepsis and septic shock. Indeed, various experimental studies have been performed in acute endotoxic or septic shock in different animal models in vivo, focusing on the hemodynamic response. At the same time in vitro studies have studied the removal of different cytokines, both by convection and adsorption.


Septic Shock Acute Renal Failure Renal Replacement Therapy Continuous Renal Replacement Therapy Endotoxic Shock 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Stein B, Pfenninger E, Grunert A et al (1990) Influence of continuous hemofiltration on hemodynamics and central blood volume in experimental endotoxic shock. Intensive Care Med 16: 494–499PubMedCrossRefGoogle Scholar
  2. 2.
    Freeman BD, Yatsiv I, Natanson C et al (1995) Continuous arteriovenous hemofiltration does not improve survival in a canine model of septic shock. J Am Coll Surg 180: 286–292PubMedGoogle Scholar
  3. 3.
    Gomez A, Wang R, Unruh H et al (1990) Hemofiltration reverses left ventricular dysfunction during sepsis in dogs. Anesthesiology 73: 671–685PubMedCrossRefGoogle Scholar
  4. 4.
    Mink SN, Jha P, Wang R et al (1995) Effects of continuous arteriovenous hemofiltration with systemic vasopressor therapy on depressed left ventricular contractility and tissue oxygen delivery in canine Escherichia coli sepsis. Anesthesiology 83: 178–190PubMedCrossRefGoogle Scholar
  5. 5.
    Heidemann SM, Ofenstein JP, Sarnaik AP (1994) Efficacy of continuous arteriovenous hemofiltration in endotoxic shock. Circ Shock 44: 183–187PubMedGoogle Scholar
  6. 6.
    Lee PA, Matson JR, Pryor RW et al (1993) Continuous arteriovenous hemofiltration therapy for Staphylococcus aureus induced septicemia in immature swine. Crit Care Med 21: 914–924PubMedCrossRefGoogle Scholar
  7. 7.
    Grootendorst AF, van Bommel EFH, van der Hoven B et al (1992) High-volume hemofiltration improves hemodynamics of endotoxin-induced shock in the pig. J Crit Care 7: 67–75CrossRefGoogle Scholar
  8. 8.
    Grootendorst AF, van Bommel EFH, van der Hoven B et al (1992) High volume hemofiltration improves right ventricular function of endotoxin induced shock in the pig. Intensive Care Med 18: 235–240PubMedCrossRefGoogle Scholar
  9. 9.
    Grootendorst AF, van Bommel EF, van Leengoed LA et al (1994) High volume hemofiltration improves hemodynamics and survival of pigs exposed to gut ischemia and reperfusion. Shock 2: 72–78PubMedCrossRefGoogle Scholar
  10. 10.
    Rogiers P, Zhang H, Smail N et al (1999) CVVH improves cardiac performance by mechanisms other than TNF attenuation during endotoxic shock. Crit Care Medicine (in press)Google Scholar
  11. 11.
    Murphey ED, Fessler JF, Bottoms GD et al (1997) Effects of continuous venovenous hemofiltration on cardiopulmonary function in a porcine model of endotoxin-induced shock. J Vet Res 58: 408–413Google Scholar
  12. 12.
    Lonneman G, Schindler R, Dinarello CA et al (1993) Removal of cytokines by hemodialysis membrane in vitro. In: Faist E, Meakins J, Schildberg FW (eds) Host defense dysfunction in trauma, shock and sepsis. Springer, Berlin Heidelberg New York 613–623CrossRefGoogle Scholar
  13. 13.
    Barrera P, Janssen EM, Demacker PN et al (1992) Removal of interleukin-1 beta and TNF from human plasma by in vitro dialysis with polyacrylonitrile membranes. Lymphokine Cytokine Res 11: 99–104PubMedGoogle Scholar
  14. 14.
    Goldfarb S, Golper TA (1994) Pro-inflammatory cytokines and hemofiltration membranes. J Am Soc Nephrol 5: 228–232PubMedGoogle Scholar
  15. 15.
    Nagaki M, Hughes RD, Lau JYN et al (1991) Removal of endotoxin and cytokines by adsorbents and the effects of plasma protein binding. Int J Artif Organs 14: 43–50PubMedGoogle Scholar
  16. 16.
    Journois D (1995) Complement fragments and cytokines: production and removal as consequences of hemofiltration. In: Sieberth HG, Stummvoll HK, Kierdorf H (eds) Continuous extracorporeal treatment in multiple organ dysfunction syndrome. Contrib Nephrol Basel Karger 116: 80–85Google Scholar
  17. 17.
    Cheadle WG, Hanasawa K, Gallinaro RN et al (1991) Endotoxin filtration and immune stimulation improve survival from gram-negative sepsis. Surgery 110: 785–792PubMedGoogle Scholar
  18. 18.
    Jaber BL, Barrett TW, Cendoroglo Neto M et al (1998) Endotoxin removal by polymyxin-B immobilized derivative fibers during in vitro hemoperfusion of 10% human plasma. ASAIO J Jan-Feb; 44 (1): 54–61CrossRefGoogle Scholar
  19. 19.
    Sato T, Orlowski JP, Zborowski M (1993) Experimental study of extracorporeal perfusion for septic shock. ASAIO J 39: M790 - M793PubMedCrossRefGoogle Scholar
  20. 20.
    Gotloib L, Barzilay E, Shustak A et al (1986) Hemofiltration in septic ARDS. The artificial kidney as an artificial endocrine lung. Resuscitation 13: 123–132Google Scholar
  21. 21.
    Bellomo R (1995) Continuous hemofiltration as blood purification in sepsis. New Horizons 3: 732–737PubMedGoogle Scholar
  22. 22.
    Elliott D, Wiles C, Reynolds H et al (1994) Removal of cytokines in septic patients using continuous venovenous hemodiafiltration (letter). Crit Care Med 22: 718–719PubMedCrossRefGoogle Scholar
  23. 23.
    Kierdorf H, Melzer H, Weissen D et al (1992) Elimination of tumor necrosis factor by continuous venovenous hemofiltration (abstract). Ren Fail 14: 98Google Scholar
  24. 24.
    Millar AB, Armstrong L, van der Linden (1993) Cytokine production and hemofiltration in children undergoing cardiopulmonary bypass. Ann Thorac Surg 56: 1499–1502Google Scholar
  25. 25.
    Andreasson S, Güthberg S, Berggren H et al (1993) Hemofiltration modifies complement activation after extracorporeal circulation in infants. Ann Thorac Surg 56: 1515–1517PubMedCrossRefGoogle Scholar
  26. 26.
    Bellomo R, Tipping P, Boyce N (1995) Interleukin-6 and interleukin-8 extraction during continuous venovenous hemodiafiltration in septic acute renal failure. Renal Failure 17: 457–466PubMedCrossRefGoogle Scholar
  27. 27.
    van Bommel EFH, Hesse CJ, Jutte NHPM et al (1995) Cytokine kinetics (TNF-alpha, IL-lb, IL-6) during continuous hemofiltration: a laboratory and clinical study. In: Sieberth HG, Stummvoll HK, Kierdort H (eds) Continuous extracorporeal treatment in multiple organ dysfunction syndrome. Contrib Nephrol Basel Karger 116: 62–75Google Scholar
  28. 28.
    Hoffmann J, Hartl W, Deppisch et al (1995) Hemofiltration in human sepsis: evidence for elimination of immunomodulary substances. Kidney International 48: 1563–1570PubMedCrossRefGoogle Scholar
  29. 29.
    Hoffmann J, Hartl W, Deppisch R et al (1996) Effect of hemofiltration on hemodynamics and systemic concentrations of anaphylatoxins and cytokines in human sepsis. Intensive Care Med 22: 1360–1367PubMedCrossRefGoogle Scholar
  30. 30.
    Tonnesen E, Hansen M, Hiihndorf K et al (1993) Cytokines in plasma and ultrafiltrate during continuous arteriovenous hemofiltration. Anaesth Intens Care 21: 752–758Google Scholar
  31. 31.
    Sander A, Armbruster W, Sander B et al (1995) The influence of continuous hemofiltration on cytokine elimination and cardiovascular stability in the early phase of sepsis. Contrib Nephrol 116: 99–103PubMedGoogle Scholar
  32. 32.
    Gasche Y, Pascual M, Suter PM et al (1996) Complement depletion during haemofiltration with polyacrilonitrile membranes. Nephrol Dial Transplant 11: 117–119PubMedCrossRefGoogle Scholar
  33. 33.
    Kellum JA, Johnson JP, Kramer D et al (1998) Diffusive vs convective therapy: effects on mediators of inflammation in patients with severe systemic inflammatory response syndrome. Crit Care Med 26: 1995–2000PubMedCrossRefGoogle Scholar
  34. 34.
    Schetz M, Ferdinande P, Van den Berghe G et al (1995) Removal of pro-inflammatory cytokines with renal replacement therapy: sense or nonsense? Intensive Care Med 21: 169–176PubMedCrossRefGoogle Scholar
  35. 35.
    Rodby RA (1998) Hemofiltration for SIRS: Bloodletting, twentieth century style? Crit Care Med 26: 1940–1942PubMedCrossRefGoogle Scholar
  36. 36.
    Gettings LG, Reynolds HN, Scalea T (1999) Outcome in post-traumatic acute renal failure when CRRT is applied early versus late. Intensive Care Med 25: 805–813PubMedCrossRefGoogle Scholar
  37. 37.
    Bellomo R, Balwin I, Cole, Ronco C (1998) Preliminary experience with high-volume hemofiltration in human septic shock. Kidney Int [Suppl]May;66:S182-S 185Google Scholar
  38. 38.
    Kline JA, Gordon BE, Williams et al (1999) Large-pore hemodialysis in acute endotoxin shock. Crit Care Med 27 (3): 588–596PubMedCrossRefGoogle Scholar
  39. 39.
    Lee PA, Weger GW, Pryor RW et al (1998) Effects of filter pore size on efficacy of continuous arteriovenous hemofiltration therapy for Staphylococcus aureus-induced septicemia in immature swine. Crit Care Med 26: 730–737PubMedCrossRefGoogle Scholar
  40. 40.
    Hanasawa K, Tani T, Kodama M (1989) New approach to endotoxic and septic shock by means of polymyxin B immobilized fiber. Surg Gynecol Obstet 168: 323–331PubMedGoogle Scholar
  41. 41.
    Kodama M, Hanasawa K, Tani T (1990) New therapeutic method against septic shock-Removal of endotoxin using extracorporeal circulation. Adv Exp Med Biol 256: 653–664PubMedGoogle Scholar
  42. 42.
    Kodama M, Aoki H, Tani T, Hanasawa K (1993) Hemoperfusion using a polymyxin B immobilized fiber column for the removal of endotoxin. In: Levin J, Alving CR, Munford RS, Stutz PL (eds) Bacterial endotoxin: recognition and effector mechanisms. Amsterdam, The Netherlands, Elsevier Science Publishers, pp 389–398Google Scholar
  43. 43.
    Aoki H, Kodama M, Tani T, Hanasawa K (1994) Treatment of sepsis by extracorporeal elimination of endotoxin using polymyxin B-immobilized fiber. Am J Surg 167: 412–417PubMedCrossRefGoogle Scholar
  44. 44.
    Tetta C, Cavaillon JM, Schulze M et al (1998) Removal of cytokines and activated complement components in an experimental model of continuous plasma filtration coupled with sorbent adsorption. Nephrol Dial Transplant 13: 1458–1464PubMedCrossRefGoogle Scholar
  45. 45.
    Humes HD, Mackay SM, Funke AJ, Buffington DA (1999) Tissue engineering of a bioartificial renal tubule assist device: in vitro transport and metabolic characteristics. Kidney Int 55: 2502–2514PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2000

Authors and Affiliations

  • P. Rogiers

There are no affiliations available

Personalised recommendations