Skip to main content

Clinical Aspects of Nutrition in Acute Renal Failure

  • Conference paper
  • 222 Accesses

Abstract

The mortality of acute renal failure has not changed in the last 20 years [1–4] despite progress in intensive care and extracorporeal treatment. This is mainly due to an increasing incidence of multiple organ failure (MOF) including acute renal failure (ARF) [2–4]. Major changes in the treatment of ARF in the intensive care unit (ICU) in the last 20 years were the development of continuous renal replacement therapy (CRRT) and the improvements in the nutritional management. CRRT offers the opportunity thanks to the unlimited fluid exchange to adapt nutritional support to the individual needs of these critically ill patients [4]. There is no doubt that the principles of nutrition in ARF in the ICU fundamentally differ from those used in the treatment of patients with end-stage renal failure (ESRF) [5]. The concept of a diet with reduced protein intake and the exclusive use of essential amino acids (EAA) can not be transferred to the nutritional support of ARF patients [6]. The problems of such a transfer will be discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Butkus DE (1983) Persistent high mortality in acute renal failure. Arch Intern Med 2: 209–212

    Article  Google Scholar 

  2. Sieberth HG, Kierdorf H (1989) Is continuous haemofiltration superior to intermittent dialysis and haemofiltration treatment? Adv Exp Med Biol 260: 181–192

    Article  PubMed  CAS  Google Scholar 

  3. Cameron JS (1990) Acute renal failure thirty years on. Q J Med 74: 1–2

    PubMed  CAS  Google Scholar 

  4. Kierdorf H (1995) The nutritional management of acute renal failure in the intensive care unit. New Horizon 3: 700–718

    Google Scholar 

  5. Druml W (1993) Nutritional support in acute renal failure. Clin Nutr 12: 196–207

    Article  PubMed  CAS  Google Scholar 

  6. Berlyne GM, Bazzard FJ, Booth EM et al (1967) The dietary treatment of acute renal failure. Q J Med 141: 59–65

    Google Scholar 

  7. Kleinknecht D, Junkers R, Chanard J et al (1972) Uremic and non-uremic complications in acute renal failure. Evaluation of early and frequent dialysis on prognosis. Kidney Int 1: 190–194

    Article  PubMed  CAS  Google Scholar 

  8. Abel RM, Beck CH, Abbott WM et al (1973) Improved survival from acute renal failure after treatment with intravenous essential L-amino acids and glucose. N Engl J Med 288: 695–698

    Article  PubMed  CAS  Google Scholar 

  9. Mault JR, Bartlett RH, Deckert RE et al (1983) Starvation: A major contributing factor to mortality in acute renal failure. Trans Am Soc Artif Intern Organs 29: 390–394

    PubMed  CAS  Google Scholar 

  10. Feinstein El, Blumenkrantz J, Healy M et al (1981) Clinical and metabolic responses to par-enteral nutrition in acute renal failure. Medicine 60: 124–137

    Article  PubMed  CAS  Google Scholar 

  11. Feinstein EI, Kopple JD, Silberman H et al (1983) Total parenteral nutrition with high or low nitrogen intakes in patients with acute renal failure. Kidney Int 24: 5319 - S323

    Google Scholar 

  12. Wolfe RR, Jahoor F, Hartl WH (1989) Protein and amino acid metabolism after injury. Diabetes Metab Rev 5: 149–164

    Article  PubMed  CAS  Google Scholar 

  13. Flugel-Link RM, Salusky IB et al (1983) Protein and amino acid metabolism in the posterior hemicorpus of acutely uremic rats. Am J Physiol 244: 615–623

    Google Scholar 

  14. Lacy WW (1969) Effect of acute uremia on amino acid uptake and urea production by per-fused rat liver. Am J Physiol 216: 1300–1305

    PubMed  CAS  Google Scholar 

  15. Hasselgren PO, Pedersen P, Sax HC et al (1988) Current concepts of protein turnover and amino acid transport in liver and skeletal muscle during sepsis. Arch Surg 123: 992–999

    Article  PubMed  CAS  Google Scholar 

  16. Roth E, Funovics J, Schulz F, Karner J (1980) Biochemische Methoden zur Bestimmung des klinischen Eiweißkatabolismus. Infusionsther Klin Ern 6: 306–309

    Google Scholar 

  17. Souba WW, Smith RJ, Wilmore DW (1985) Glutamine metabolism by the intestinal tract. J Par Ent Nutr 9: 608–617

    Article  CAS  Google Scholar 

  18. Schauder P (1990) Glutamine metabolism in human lymphocytes. Clin Nutr 9: 36–37

    Article  PubMed  CAS  Google Scholar 

  19. Druml W, Burger U, Kleinberger G et al (1986) Elimination of aminoacids in acute renal failure. Nephron 42: 62–67

    Article  PubMed  CAS  Google Scholar 

  20. Frayn KN, Little RA, Maycock PF, Stoner HB (1985) The relationship of plasma catecholamines to acute metabolic and hormonal responses to injury in man. Circ Shock 16: 229–240

    PubMed  CAS  Google Scholar 

  21. Baracos V, Rodemann HP, Dinarello CA, Goldberg AL (1983) Stimulation of muscle protein degradation and prostaglandin E2 release by leukocyte pyrogen (interleukin-1). N Engl J Med 308: 553–558

    Article  PubMed  CAS  Google Scholar 

  22. Clowes GHA, George BC, Villee CA, Saravis CA (1983) Muscle proteolysis induced by a circulating peptide in patients with sepsis or trauma. N Engl J Med 308: 545–552

    Article  PubMed  Google Scholar 

  23. Nathan CF (1987) Secretory products of macrophages. J Clin Invest 79: 319–326

    Article  PubMed  CAS  Google Scholar 

  24. Zamir O, Hasselgren PO, Kunkel SL et al (1992) Evidence that tumor necrosis factor participates in the regulation of muscle proteolysis during sepsis. Arch Surg 127: 170–174

    Article  PubMed  CAS  Google Scholar 

  25. Hörl WH, Heidland A (1980) Enhanced proteolytic activity: cause of protein catabolism in acute renal failure. Am J Clin Nutr 33: 1423–1427

    PubMed  Google Scholar 

  26. Hörl WH, Stepinski J, Gantert C et al (1981) Evidence for the participation of proteases on protein catabolism during hypercatabolic renal failure. Klin Wochenschr 59: 751–757

    Article  PubMed  Google Scholar 

  27. Heidland A, Schaefer RM, Heidbreder E, Hörl WH (1988) Catabolic factors in renal failure: Therapeutic approaches. Nephrol Dial Transplant 3: 8–16

    PubMed  CAS  Google Scholar 

  28. Young GA, Parsons FM (1966) Amino nitrogen loss during haemodialysis, its dietary significance and replacement. Clin Sci 31: 299–307

    PubMed  CAS  Google Scholar 

  29. Kopple JD, Swendseid ME, Shinaber JH, Umezawa CY (1973) The free and bound amino acids removed by hemodialysis. Trans Am Soc Artif Intern Organs 14: 309–311

    Article  Google Scholar 

  30. Wolfson M, Jones MR, Kopple JD (1982) Amino acid losses during hemodialysis with infusion of aminoacids and glucose. Kidney Int 21: 500–506

    Article  PubMed  CAS  Google Scholar 

  31. Alverstrand A, Gutierrez A, Wahren J et al (1987) Protein catabolism in sham hemodialysis: the effect of different membranes. Blood Purif 5: 269–275

    Google Scholar 

  32. Mault JR, Bartlett RU, Dechert RE et al (1982) Oxygen consumption during hemodialysis for acute renal failure. Trans Am Soc Artif Intern Organs 28: 514–516

    Google Scholar 

  33. Blumenkrantz MJ, Gahl GM, Kopple JD et al (1981) Protein losses during peritoneal dialysis. Kidney Int 19: 593–602

    Article  PubMed  CAS  Google Scholar 

  34. Davenport A, Will EJ, Davidson AM (1993) Improved cardiovascular stability during continuous modes of renal replacement therapy in critically ill patients with acute hepatic and renal failure. Crit Care Med 21: 328–338

    Article  PubMed  CAS  Google Scholar 

  35. Davies SP, Reaveley DA, Brown EA, Kox WJ (1991) Amino acid clearences and daily losses in patients with acute renal failure treated by continuous arteriovenous hemodialysis. Crit Care Med 19: 1510

    Article  PubMed  CAS  Google Scholar 

  36. De Fronzora, Tobin JD, Rowe JW, Andres R (1978) Glucose intolerance in uremia. Quantification of pancreatic beta cell sensitivity to glucose and tissue sensitivity to insulin. J Clin Invest 62: 425–434

    Article  Google Scholar 

  37. Fröhlich J, Schölmerich J, Hoppe-Seyler G et al (1974) The effect of acute uremia on gluconeogenesis in isolated perfused rat livers. Europ J Clin Invest 4: 453–458

    PubMed  Google Scholar 

  38. May RC, Clark AS, Goheer MA, Mitch WE (1985) Specific defects in insulin-mediated muscle metabolism in acute uremia. Kidney Int 28: 490–497

    Article  PubMed  CAS  Google Scholar 

  39. Cianciaruso B, Bellizzi V, Napoli R et al (1991) Hepatic uptake and release of glucose, lactate and amino acids in acutely uremic dogs. Metabolism 40: 261–290

    Article  PubMed  CAS  Google Scholar 

  40. Bellomo R, Colman PG, Caudwell J et al (1992) Acute continuous hemofiltration with dialysis: effect on insulin concentrations and glycemic control in critically ill patients. Crit Care Med 20: 1672–1676

    Article  PubMed  CAS  Google Scholar 

  41. Cianciaruso B, Sacca L, Terracciano V et al (1987) Insulin metabolism in acute renal failure. Kidney Int 32: S 109-S 1 12

    Google Scholar 

  42. Druml W, Zechner R, Magometschnigg D et al (1985) Post-heparin lipolytic activity in acute renal failure. Clin Nephrol 23: 289–293

    PubMed  CAS  Google Scholar 

  43. Naschitz JE, Varak C, Yeshurun D (1983) Reversible diminished insulin requirement in acut failure. Postgrad Med J 59: 269–271

    Article  PubMed  CAS  Google Scholar 

  44. Druml W, Laggner A, Widhalm K et al (1983) Lipid metabolism in acute renal failure. Kidney Int 24: S139 - S142

    Google Scholar 

  45. Wanner C, Riegel W, Schaefer RM et al (1989) Carnitine and camitine esters in acute renal failure. Nephrol Dial Transplant 4: 951–956

    PubMed  CAS  Google Scholar 

  46. Druml W, Fischer M, Sertl S et al (1992) Fat elimination in acute renal failure: Long chain versus medium chain triglycerides. Am J Clin Nutr 55: 468–472

    PubMed  CAS  Google Scholar 

  47. Cuthbertson DP (1942) Post-shock metabolic response. Lancet 1 433–437

    Article  Google Scholar 

  48. Wilmore DW, Kinney JM (1981) Panel report on nutritional support of patients with trauma or infection. Am J Clin Nutr 34: 1213–1222

    PubMed  CAS  Google Scholar 

  49. Davies JWL (1982) Physiological responses to burning injury. Academic Press, New York

    Google Scholar 

  50. Clifton GI, Robertson CS, Choi SC (1986) Assessment of nutritional requirements of head-injured patients. J Neurosurg 64: 895–901

    Article  PubMed  CAS  Google Scholar 

  51. Barison RD (1990) The measurement of energy expenditure: instrumentation, practical considerations, and clinical application. Respir Care 35: 640–659

    Google Scholar 

  52. Stoner HB, Little RA, Frayn KN et al (1983) The effect of sepsis on the oxidation of carbohydrate and fat. Br J Surg 70: 32–35

    Article  PubMed  CAS  Google Scholar 

  53. Liddell MJ, Daniel AM, MacLean LD et al (1979) The role of stress hormones in the catabolic metabolism of shock. Surg Gynecol Obstet 149: 822–830

    PubMed  CAS  Google Scholar 

  54. White RH, Frayn KN, Little RA et al (1987) Hormonal and metabolic responses to glucose infusion in sepsis studied by the hyperglycaemic glucose clamp technique. J Parent Ent Nutr 11: 345–353

    Article  CAS  Google Scholar 

  55. Little RA, Henderson A, Frayn KN et al (1987) The disposal of intravenous glucose studied using glucose and insulin clamp techniques in sepsis and trauma in man. Acta Anaesth Belg 38: 275–279

    PubMed  CAS  Google Scholar 

  56. Long CL, Jeevanandam M, Kim BM et al (1977) Whole-body protein synthesis and catabolism in septic man. Am J Clin Nutr 30: 1340–1344

    PubMed  CAS  Google Scholar 

  57. Schneeweiß B, Graninger W, Stockenhuber F et al (1990) Energy metabolism in acute and chronic renal failure. Am J Clin Nutr 52: 596–601

    PubMed  Google Scholar 

  58. Bouffard Y, Viale JP, Annat G et al (1987) Energy expenditure in the acute renal failure patient mechanically ventilated. Intens Care Med 13: 401–406

    Article  CAS  Google Scholar 

  59. Soop M, Forsberg E, Thörne A et al (1989) Energy expenditure in postoperative multiple organ failure with acute renal failure, Clin Nephrol 31: 139–143

    PubMed  CAS  Google Scholar 

  60. Sax HC, Talamini MA, Brackett K et al (1986) Hepatic steatosis in total parenteral nutrition: failure of fatty infiltration to correlate with abnormal serum hepatic enzyme levels. Surgery I00: 697–703

    CAS  Google Scholar 

  61. Spreiter SC, Meyers BD, Swenson RS (1980) Protein energy requirements in subjects with acute renal failure receiving intermittent hemodialysis. Am J Clin Nutr 33: 1433–1438

    PubMed  CAS  Google Scholar 

  62. Roth E, Funovics J, Sporn P et al (1981) Parenterale Ernährung beim septischen Patienten. Intensivmed 18: 97–101

    Google Scholar 

  63. Radrizzani D, lapichino G, Cambisano M et al (1988) Peripheral, visceral and body nitrogen balance of catabolic patients, without and with parenteral nutrition. Intensive Care Med 14: 212–216

    Article  PubMed  CAS  Google Scholar 

  64. Behrendt W, Kierdorf H (1992) Stoffwechsel and Ernährung bei Sepsis. Intensiv and Notfall 17: 96–101

    Google Scholar 

  65. Knochel JP (1985) Complications of total parenteral nutrition. Kidney Int 27: 489–495

    Article  PubMed  CAS  Google Scholar 

  66. Bartlett RH, Mault JR, Deckert RE et al (1986) Continuous arteriovenous hemofiltration: Improved survival in surgical acute renal failure? Surgery 100: 400–408

    PubMed  CAS  Google Scholar 

  67. Bartlett RH (1985) Energy metabolism in acute renal failure. In: Sieberth HG, Mann H (eds) Continuous arteriovenous hemofiltration (CAVH). Karger, Basel, pp 194–203

    Google Scholar 

  68. Rennie MJ (1985) Muscle protein turnover and the wasting due to injury and disease. Br Med Bull 41: 257–264

    PubMed  CAS  Google Scholar 

  69. Bessey PQ (1990) Nutritional support in critical illness. In: Deitch AE. Multiple organ failure. Thieme, Stuttgart, New York, pp 126–149

    Google Scholar 

  70. Lopez-Martinez J, Caparros T et al (1980) Nutrition parenteral en enfermos septicos con fra-caso renal agudo en fase poliurica. Rev Clin Esp 157: 171–178

    PubMed  CAS  Google Scholar 

  71. Bellomo R, Martin H, Parkin G et al (1991) Continuous arteriovenous haemodiafiltration in the critically ill. Influence on major nutrient balances. Intensive Care Med 17: 399–402

    Article  PubMed  CAS  Google Scholar 

  72. Feinstein EI (1985) Parenteral nutrition in acute renal failure. Am J Nephrol 5: 145–149

    Article  PubMed  CAS  Google Scholar 

  73. Kierdorf H, Kindler J, Sieberth HG (1986) Nitrogen balance in patients with acute renal failure treated by continuous arteriovenous haemofiltration. Nephrol Dial Transplant 1: 72

    Google Scholar 

  74. Kierdorf H (1991) Continuous versus intermittent treatment: Clinical results in acute renal failure. Contrib Nephrol 93: 1–12

    PubMed  CAS  Google Scholar 

  75. Nath KA, Paller MS (1990) Dietary deficiency of antioxidants exacerbates ischemic injury in the rat kidney. Kidney Int 38: 1109–1117

    Article  PubMed  CAS  Google Scholar 

  76. Joannidis M, Bonn G, Pfaller W (1989) Lipid peroxidation–An initial event in experimental acute renal failure. Renal Physiol Biochem 12: 47–55

    PubMed  CAS  Google Scholar 

  77. Golden MHN, Golden BE, Harland PSEG et al (1978) Zinc and immuno competence in protein-energy malnutrition. Lancet 1: 1226–1229

    Article  PubMed  CAS  Google Scholar 

  78. Story DA, Ronco C, Bellomo R (1999) Trace element and vitamin concentration and losses in critically ill patients treated with continuous venovenous hemofiltration. Crit Care Med 27: 220–223

    Article  PubMed  CAS  Google Scholar 

  79. Fortin MC, Amyot SL, Geadah D, Leblanc M (1999) Serum concentrations and clearances of folic acid and pyridoxal-5-phosphate during venovenous continuous renal replacement therapy. Intensive Care Med 25: 594–598

    Article  PubMed  CAS  Google Scholar 

  80. Friedman AL, Chesney RW, Gilbert EF et al (1983) Secondary oxalosis as a complication of parenteral alimentation in acute renal failure. Am J Nephrol 3: 248–252

    Article  PubMed  CAS  Google Scholar 

  81. Druml W, Schwarzenhofer M, Apsner R, Hörl WH (1998) Fat-soluble vitamines in patients with acute renal failure. Miner Electrolyte Metab 24: 220–226

    Article  PubMed  CAS  Google Scholar 

  82. Bergstrom J, Furst P, Noree LU (1975) Treatment of chronic uremic patients with protein-poor diet and oral supply of essential amino acids. 1. Nitrogen balance studies. Clin Nephrol 3: 187–194

    CAS  Google Scholar 

  83. Fürst P, Ahlberg M, Alvestrand A, Bergstrom J (1978) Principles of essential amino acid therapy in uremia. Am J Clin Nutr 31: 1744–1755

    PubMed  Google Scholar 

  84. Druml W (1989) Nutritional importance of non-essential amino acids. J Clin Nutr Gastroenterol 4: 71–75

    Google Scholar 

  85. Druml W, Bürger U, Kleinberger G et al (1986) Elimination of amino acids in acute renal failure. Nephron 42: 62–67

    Article  PubMed  CAS  Google Scholar 

  86. Kierdorf H, Stehle P, Behrendt W et al (1991) Influence of a new amino acid (AA) solution with increased amount of essential and branched-chain AA on protein catabolism in acute renal (ARF) and multiple organ failure (MOF). Clin Nutr 10[Suppl 21: 57–58

    Article  Google Scholar 

  87. Craig GM, Crane CW (1971) Lactic acidosis complicating liver failure after intravenous fructose. Brit Med J 211–216

    Google Scholar 

  88. Förster H, Meyer E, Ziege M (1970) Erhöhung von Serumharnsäure and Serumbilirubin nach hochdosierten Infusionen von Sorbit, Xylit and Fructose. Klin Wochenschr 48: 878–879

    Article  PubMed  Google Scholar 

  89. Evans GW, Phillips G, Mukherjee TM et al (1973) Identification of crystals deposited in brain and kidney after xylitol administration by biochemical, and electron diffraction methods. J Clin Path 26: 32–36

    Article  PubMed  CAS  Google Scholar 

  90. Burke JF, Wolfe RR, Mullany CJ et al (1979) Glucose requirements following burn injury. Ann Surg 190: 274–279

    Article  PubMed  CAS  Google Scholar 

  91. Romanosky AJ, Bagby GJ, Bockman EL et al (1980) Free fatty acid utilization by skeletal muscle after endotoxin administration. Am J Physiol 239: E391 - E395

    PubMed  CAS  Google Scholar 

  92. Spitzer JJ, Bagby GJ, Meszaros K, Lang CH (1988) Alteration in lipid and carbohydrate metabolism in sepsis. J Parenter Enteral Nutr 12: 553–558

    Article  Google Scholar 

  93. Schneeweiß B, Graninger W, Ferenci P et al (1992) Short term energy balance in patients with infections: Carbohydrate-based versus fat-based diets. Metabolism 41: 125–130

    Article  PubMed  Google Scholar 

  94. Christman JW, McCain RW (1993) A sensible approach to the nutritional support of mechanically ventilated critically ill patients. Intensive Care Med 19: 129–136

    Article  PubMed  CAS  Google Scholar 

  95. Sobrado J, Moldawer LL, Pomposelli JJ et al (1985) Lipids emulsions and reticuloendothelial system function in healthy and burned guinea pigs. Am J Clin Nutr 9: 559–565

    Google Scholar 

  96. McArdle AH, Palmason C, Mozency I, Brown RA (1981) A rationale for enteral feeding as the preferable route for hyperalimentation. Surgery 90: 616–623

    PubMed  CAS  Google Scholar 

  97. Kudsk KA, Crose MA, Fabian TC et al (1991) Enteral versus parenteral feeding. Effects on septic morbidity after blunt and penetrating abdominal trauma. Ann Surg 215: 503–513

    Article  Google Scholar 

  98. Zaloga GP (1991) Bedside method for placing small bowel feeding tubes in critically ill patients. A prospective study. Chest 100: 1643–1646

    Article  PubMed  CAS  Google Scholar 

  99. Deitch EA, Winterton J, Berg R (1987) The gut as a portal of entry for bacteremia. Role of protein malnutrition. Ann Surg 207: 681–692

    Article  Google Scholar 

  100. Mouser JK, Hak EB, Kuhl DA et al (1997) Recovery from ischemic acute renal failure is improved with enteral compared with parenteral nutrition. Crit Care Med 25: 1748–1754

    Article  PubMed  CAS  Google Scholar 

  101. Lee HA, Sharpstone P, Ames AC (1967) Parenteral nutrition in renal failure. Postgrad Med J 43: 81–91

    Article  PubMed  CAS  Google Scholar 

  102. Paganini EP, O’Hara P, Nakamoto S (1984) Slow continuous ultrafiltration in hemodialysis resistant oligurie acute renal failure patients. Trans Am Soc Artif Intern Organs 30: 173–178

    PubMed  CAS  Google Scholar 

  103. Weisse L, Danielson BG, Wikstroem B et al (1989) Continuous arteriovenous haemofiltration in the treatment of 100 critically ill patients with acute renal failure: report on clinical outcome and nutritional aspects. Clin Nephrol 31: 184–189

    Google Scholar 

  104. Geronemus R, Schneider N (1984) Continuous arteriovenous haemodialysis: A new modality for treatment of acute renal failure. Trans Am Soc Artif Intern Organs 30: 610–613

    PubMed  CAS  Google Scholar 

  105. Ronco C (1993) Continuous renal replacement therapies for the treatment of acute renal failure in intensive care patients. Clin Nephrol 40: 187–198

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Italia

About this paper

Cite this paper

Kierdorf, H.P. (2000). Clinical Aspects of Nutrition in Acute Renal Failure. In: Gullo, A. (eds) Anesthesia, Pain, Intensive Care and Emergency Medicine — A.P.I.C.E.. Springer, Milano. https://doi.org/10.1007/978-88-470-2286-7_51

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2286-7_51

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-0095-7

  • Online ISBN: 978-88-470-2286-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics