Clinical Aspects of Nutrition in Acute Renal Failure

  • H. P. Kierdorf
Conference paper


The mortality of acute renal failure has not changed in the last 20 years [1–4] despite progress in intensive care and extracorporeal treatment. This is mainly due to an increasing incidence of multiple organ failure (MOF) including acute renal failure (ARF) [2–4]. Major changes in the treatment of ARF in the intensive care unit (ICU) in the last 20 years were the development of continuous renal replacement therapy (CRRT) and the improvements in the nutritional management. CRRT offers the opportunity thanks to the unlimited fluid exchange to adapt nutritional support to the individual needs of these critically ill patients [4]. There is no doubt that the principles of nutrition in ARF in the ICU fundamentally differ from those used in the treatment of patients with end-stage renal failure (ESRF) [5]. The concept of a diet with reduced protein intake and the exclusive use of essential amino acids (EAA) can not be transferred to the nutritional support of ARF patients [6]. The problems of such a transfer will be discussed.


Acute Renal Failure Multiple Organ Failure Medium Chain Triglyceride Negative Nitrogen Balance Extracorporeal Treatment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Butkus DE (1983) Persistent high mortality in acute renal failure. Arch Intern Med 2: 209–212CrossRefGoogle Scholar
  2. 2.
    Sieberth HG, Kierdorf H (1989) Is continuous haemofiltration superior to intermittent dialysis and haemofiltration treatment? Adv Exp Med Biol 260: 181–192PubMedCrossRefGoogle Scholar
  3. 3.
    Cameron JS (1990) Acute renal failure thirty years on. Q J Med 74: 1–2PubMedGoogle Scholar
  4. 4.
    Kierdorf H (1995) The nutritional management of acute renal failure in the intensive care unit. New Horizon 3: 700–718Google Scholar
  5. 5.
    Druml W (1993) Nutritional support in acute renal failure. Clin Nutr 12: 196–207PubMedCrossRefGoogle Scholar
  6. 6.
    Berlyne GM, Bazzard FJ, Booth EM et al (1967) The dietary treatment of acute renal failure. Q J Med 141: 59–65Google Scholar
  7. 7.
    Kleinknecht D, Junkers R, Chanard J et al (1972) Uremic and non-uremic complications in acute renal failure. Evaluation of early and frequent dialysis on prognosis. Kidney Int 1: 190–194PubMedCrossRefGoogle Scholar
  8. 8.
    Abel RM, Beck CH, Abbott WM et al (1973) Improved survival from acute renal failure after treatment with intravenous essential L-amino acids and glucose. N Engl J Med 288: 695–698PubMedCrossRefGoogle Scholar
  9. 9.
    Mault JR, Bartlett RH, Deckert RE et al (1983) Starvation: A major contributing factor to mortality in acute renal failure. Trans Am Soc Artif Intern Organs 29: 390–394PubMedGoogle Scholar
  10. 10.
    Feinstein El, Blumenkrantz J, Healy M et al (1981) Clinical and metabolic responses to par-enteral nutrition in acute renal failure. Medicine 60: 124–137PubMedCrossRefGoogle Scholar
  11. 11.
    Feinstein EI, Kopple JD, Silberman H et al (1983) Total parenteral nutrition with high or low nitrogen intakes in patients with acute renal failure. Kidney Int 24: 5319 - S323Google Scholar
  12. 12.
    Wolfe RR, Jahoor F, Hartl WH (1989) Protein and amino acid metabolism after injury. Diabetes Metab Rev 5: 149–164PubMedCrossRefGoogle Scholar
  13. 13.
    Flugel-Link RM, Salusky IB et al (1983) Protein and amino acid metabolism in the posterior hemicorpus of acutely uremic rats. Am J Physiol 244: 615–623Google Scholar
  14. 14.
    Lacy WW (1969) Effect of acute uremia on amino acid uptake and urea production by per-fused rat liver. Am J Physiol 216: 1300–1305PubMedGoogle Scholar
  15. 15.
    Hasselgren PO, Pedersen P, Sax HC et al (1988) Current concepts of protein turnover and amino acid transport in liver and skeletal muscle during sepsis. Arch Surg 123: 992–999PubMedCrossRefGoogle Scholar
  16. 16.
    Roth E, Funovics J, Schulz F, Karner J (1980) Biochemische Methoden zur Bestimmung des klinischen Eiweißkatabolismus. Infusionsther Klin Ern 6: 306–309Google Scholar
  17. 17.
    Souba WW, Smith RJ, Wilmore DW (1985) Glutamine metabolism by the intestinal tract. J Par Ent Nutr 9: 608–617CrossRefGoogle Scholar
  18. 18.
    Schauder P (1990) Glutamine metabolism in human lymphocytes. Clin Nutr 9: 36–37PubMedCrossRefGoogle Scholar
  19. 19.
    Druml W, Burger U, Kleinberger G et al (1986) Elimination of aminoacids in acute renal failure. Nephron 42: 62–67PubMedCrossRefGoogle Scholar
  20. 20.
    Frayn KN, Little RA, Maycock PF, Stoner HB (1985) The relationship of plasma catecholamines to acute metabolic and hormonal responses to injury in man. Circ Shock 16: 229–240PubMedGoogle Scholar
  21. 21.
    Baracos V, Rodemann HP, Dinarello CA, Goldberg AL (1983) Stimulation of muscle protein degradation and prostaglandin E2 release by leukocyte pyrogen (interleukin-1). N Engl J Med 308: 553–558PubMedCrossRefGoogle Scholar
  22. 22.
    Clowes GHA, George BC, Villee CA, Saravis CA (1983) Muscle proteolysis induced by a circulating peptide in patients with sepsis or trauma. N Engl J Med 308: 545–552PubMedCrossRefGoogle Scholar
  23. 23.
    Nathan CF (1987) Secretory products of macrophages. J Clin Invest 79: 319–326PubMedCrossRefGoogle Scholar
  24. 24.
    Zamir O, Hasselgren PO, Kunkel SL et al (1992) Evidence that tumor necrosis factor participates in the regulation of muscle proteolysis during sepsis. Arch Surg 127: 170–174PubMedCrossRefGoogle Scholar
  25. 25.
    Hörl WH, Heidland A (1980) Enhanced proteolytic activity: cause of protein catabolism in acute renal failure. Am J Clin Nutr 33: 1423–1427PubMedGoogle Scholar
  26. 26.
    Hörl WH, Stepinski J, Gantert C et al (1981) Evidence for the participation of proteases on protein catabolism during hypercatabolic renal failure. Klin Wochenschr 59: 751–757PubMedCrossRefGoogle Scholar
  27. 27.
    Heidland A, Schaefer RM, Heidbreder E, Hörl WH (1988) Catabolic factors in renal failure: Therapeutic approaches. Nephrol Dial Transplant 3: 8–16PubMedGoogle Scholar
  28. 28.
    Young GA, Parsons FM (1966) Amino nitrogen loss during haemodialysis, its dietary significance and replacement. Clin Sci 31: 299–307PubMedGoogle Scholar
  29. 29.
    Kopple JD, Swendseid ME, Shinaber JH, Umezawa CY (1973) The free and bound amino acids removed by hemodialysis. Trans Am Soc Artif Intern Organs 14: 309–311CrossRefGoogle Scholar
  30. 30.
    Wolfson M, Jones MR, Kopple JD (1982) Amino acid losses during hemodialysis with infusion of aminoacids and glucose. Kidney Int 21: 500–506PubMedCrossRefGoogle Scholar
  31. 31.
    Alverstrand A, Gutierrez A, Wahren J et al (1987) Protein catabolism in sham hemodialysis: the effect of different membranes. Blood Purif 5: 269–275Google Scholar
  32. 32.
    Mault JR, Bartlett RU, Dechert RE et al (1982) Oxygen consumption during hemodialysis for acute renal failure. Trans Am Soc Artif Intern Organs 28: 514–516Google Scholar
  33. 33.
    Blumenkrantz MJ, Gahl GM, Kopple JD et al (1981) Protein losses during peritoneal dialysis. Kidney Int 19: 593–602PubMedCrossRefGoogle Scholar
  34. 34.
    Davenport A, Will EJ, Davidson AM (1993) Improved cardiovascular stability during continuous modes of renal replacement therapy in critically ill patients with acute hepatic and renal failure. Crit Care Med 21: 328–338PubMedCrossRefGoogle Scholar
  35. 35.
    Davies SP, Reaveley DA, Brown EA, Kox WJ (1991) Amino acid clearences and daily losses in patients with acute renal failure treated by continuous arteriovenous hemodialysis. Crit Care Med 19: 1510PubMedCrossRefGoogle Scholar
  36. 36.
    De Fronzora, Tobin JD, Rowe JW, Andres R (1978) Glucose intolerance in uremia. Quantification of pancreatic beta cell sensitivity to glucose and tissue sensitivity to insulin. J Clin Invest 62: 425–434CrossRefGoogle Scholar
  37. 37.
    Fröhlich J, Schölmerich J, Hoppe-Seyler G et al (1974) The effect of acute uremia on gluconeogenesis in isolated perfused rat livers. Europ J Clin Invest 4: 453–458PubMedGoogle Scholar
  38. 38.
    May RC, Clark AS, Goheer MA, Mitch WE (1985) Specific defects in insulin-mediated muscle metabolism in acute uremia. Kidney Int 28: 490–497PubMedCrossRefGoogle Scholar
  39. 39.
    Cianciaruso B, Bellizzi V, Napoli R et al (1991) Hepatic uptake and release of glucose, lactate and amino acids in acutely uremic dogs. Metabolism 40: 261–290PubMedCrossRefGoogle Scholar
  40. 40.
    Bellomo R, Colman PG, Caudwell J et al (1992) Acute continuous hemofiltration with dialysis: effect on insulin concentrations and glycemic control in critically ill patients. Crit Care Med 20: 1672–1676PubMedCrossRefGoogle Scholar
  41. 41.
    Cianciaruso B, Sacca L, Terracciano V et al (1987) Insulin metabolism in acute renal failure. Kidney Int 32: S 109-S 1 12Google Scholar
  42. 42.
    Druml W, Zechner R, Magometschnigg D et al (1985) Post-heparin lipolytic activity in acute renal failure. Clin Nephrol 23: 289–293PubMedGoogle Scholar
  43. 43.
    Naschitz JE, Varak C, Yeshurun D (1983) Reversible diminished insulin requirement in acut failure. Postgrad Med J 59: 269–271PubMedCrossRefGoogle Scholar
  44. 44.
    Druml W, Laggner A, Widhalm K et al (1983) Lipid metabolism in acute renal failure. Kidney Int 24: S139 - S142Google Scholar
  45. 45.
    Wanner C, Riegel W, Schaefer RM et al (1989) Carnitine and camitine esters in acute renal failure. Nephrol Dial Transplant 4: 951–956PubMedGoogle Scholar
  46. 46.
    Druml W, Fischer M, Sertl S et al (1992) Fat elimination in acute renal failure: Long chain versus medium chain triglycerides. Am J Clin Nutr 55: 468–472PubMedGoogle Scholar
  47. 47.
    Cuthbertson DP (1942) Post-shock metabolic response. Lancet 1 433–437CrossRefGoogle Scholar
  48. 48.
    Wilmore DW, Kinney JM (1981) Panel report on nutritional support of patients with trauma or infection. Am J Clin Nutr 34: 1213–1222PubMedGoogle Scholar
  49. 49.
    Davies JWL (1982) Physiological responses to burning injury. Academic Press, New YorkGoogle Scholar
  50. 50.
    Clifton GI, Robertson CS, Choi SC (1986) Assessment of nutritional requirements of head-injured patients. J Neurosurg 64: 895–901PubMedCrossRefGoogle Scholar
  51. 51.
    Barison RD (1990) The measurement of energy expenditure: instrumentation, practical considerations, and clinical application. Respir Care 35: 640–659Google Scholar
  52. 52.
    Stoner HB, Little RA, Frayn KN et al (1983) The effect of sepsis on the oxidation of carbohydrate and fat. Br J Surg 70: 32–35PubMedCrossRefGoogle Scholar
  53. 53.
    Liddell MJ, Daniel AM, MacLean LD et al (1979) The role of stress hormones in the catabolic metabolism of shock. Surg Gynecol Obstet 149: 822–830PubMedGoogle Scholar
  54. 54.
    White RH, Frayn KN, Little RA et al (1987) Hormonal and metabolic responses to glucose infusion in sepsis studied by the hyperglycaemic glucose clamp technique. J Parent Ent Nutr 11: 345–353CrossRefGoogle Scholar
  55. 55.
    Little RA, Henderson A, Frayn KN et al (1987) The disposal of intravenous glucose studied using glucose and insulin clamp techniques in sepsis and trauma in man. Acta Anaesth Belg 38: 275–279PubMedGoogle Scholar
  56. 56.
    Long CL, Jeevanandam M, Kim BM et al (1977) Whole-body protein synthesis and catabolism in septic man. Am J Clin Nutr 30: 1340–1344PubMedGoogle Scholar
  57. 57.
    Schneeweiß B, Graninger W, Stockenhuber F et al (1990) Energy metabolism in acute and chronic renal failure. Am J Clin Nutr 52: 596–601PubMedGoogle Scholar
  58. 58.
    Bouffard Y, Viale JP, Annat G et al (1987) Energy expenditure in the acute renal failure patient mechanically ventilated. Intens Care Med 13: 401–406CrossRefGoogle Scholar
  59. 59.
    Soop M, Forsberg E, Thörne A et al (1989) Energy expenditure in postoperative multiple organ failure with acute renal failure, Clin Nephrol 31: 139–143PubMedGoogle Scholar
  60. 60.
    Sax HC, Talamini MA, Brackett K et al (1986) Hepatic steatosis in total parenteral nutrition: failure of fatty infiltration to correlate with abnormal serum hepatic enzyme levels. Surgery I00: 697–703Google Scholar
  61. 61.
    Spreiter SC, Meyers BD, Swenson RS (1980) Protein energy requirements in subjects with acute renal failure receiving intermittent hemodialysis. Am J Clin Nutr 33: 1433–1438PubMedGoogle Scholar
  62. 62.
    Roth E, Funovics J, Sporn P et al (1981) Parenterale Ernährung beim septischen Patienten. Intensivmed 18: 97–101Google Scholar
  63. 63.
    Radrizzani D, lapichino G, Cambisano M et al (1988) Peripheral, visceral and body nitrogen balance of catabolic patients, without and with parenteral nutrition. Intensive Care Med 14: 212–216PubMedCrossRefGoogle Scholar
  64. 64.
    Behrendt W, Kierdorf H (1992) Stoffwechsel and Ernährung bei Sepsis. Intensiv and Notfall 17: 96–101Google Scholar
  65. 65.
    Knochel JP (1985) Complications of total parenteral nutrition. Kidney Int 27: 489–495PubMedCrossRefGoogle Scholar
  66. 66.
    Bartlett RH, Mault JR, Deckert RE et al (1986) Continuous arteriovenous hemofiltration: Improved survival in surgical acute renal failure? Surgery 100: 400–408PubMedGoogle Scholar
  67. 67.
    Bartlett RH (1985) Energy metabolism in acute renal failure. In: Sieberth HG, Mann H (eds) Continuous arteriovenous hemofiltration (CAVH). Karger, Basel, pp 194–203Google Scholar
  68. 68.
    Rennie MJ (1985) Muscle protein turnover and the wasting due to injury and disease. Br Med Bull 41: 257–264PubMedGoogle Scholar
  69. 69.
    Bessey PQ (1990) Nutritional support in critical illness. In: Deitch AE. Multiple organ failure. Thieme, Stuttgart, New York, pp 126–149Google Scholar
  70. 70.
    Lopez-Martinez J, Caparros T et al (1980) Nutrition parenteral en enfermos septicos con fra-caso renal agudo en fase poliurica. Rev Clin Esp 157: 171–178PubMedGoogle Scholar
  71. 71.
    Bellomo R, Martin H, Parkin G et al (1991) Continuous arteriovenous haemodiafiltration in the critically ill. Influence on major nutrient balances. Intensive Care Med 17: 399–402PubMedCrossRefGoogle Scholar
  72. 72.
    Feinstein EI (1985) Parenteral nutrition in acute renal failure. Am J Nephrol 5: 145–149PubMedCrossRefGoogle Scholar
  73. 73.
    Kierdorf H, Kindler J, Sieberth HG (1986) Nitrogen balance in patients with acute renal failure treated by continuous arteriovenous haemofiltration. Nephrol Dial Transplant 1: 72Google Scholar
  74. 74.
    Kierdorf H (1991) Continuous versus intermittent treatment: Clinical results in acute renal failure. Contrib Nephrol 93: 1–12PubMedGoogle Scholar
  75. 75.
    Nath KA, Paller MS (1990) Dietary deficiency of antioxidants exacerbates ischemic injury in the rat kidney. Kidney Int 38: 1109–1117PubMedCrossRefGoogle Scholar
  76. 76.
    Joannidis M, Bonn G, Pfaller W (1989) Lipid peroxidation–An initial event in experimental acute renal failure. Renal Physiol Biochem 12: 47–55PubMedGoogle Scholar
  77. 77.
    Golden MHN, Golden BE, Harland PSEG et al (1978) Zinc and immuno competence in protein-energy malnutrition. Lancet 1: 1226–1229PubMedCrossRefGoogle Scholar
  78. 78.
    Story DA, Ronco C, Bellomo R (1999) Trace element and vitamin concentration and losses in critically ill patients treated with continuous venovenous hemofiltration. Crit Care Med 27: 220–223PubMedCrossRefGoogle Scholar
  79. 79.
    Fortin MC, Amyot SL, Geadah D, Leblanc M (1999) Serum concentrations and clearances of folic acid and pyridoxal-5-phosphate during venovenous continuous renal replacement therapy. Intensive Care Med 25: 594–598PubMedCrossRefGoogle Scholar
  80. 80.
    Friedman AL, Chesney RW, Gilbert EF et al (1983) Secondary oxalosis as a complication of parenteral alimentation in acute renal failure. Am J Nephrol 3: 248–252PubMedCrossRefGoogle Scholar
  81. 81.
    Druml W, Schwarzenhofer M, Apsner R, Hörl WH (1998) Fat-soluble vitamines in patients with acute renal failure. Miner Electrolyte Metab 24: 220–226PubMedCrossRefGoogle Scholar
  82. 82.
    Bergstrom J, Furst P, Noree LU (1975) Treatment of chronic uremic patients with protein-poor diet and oral supply of essential amino acids. 1. Nitrogen balance studies. Clin Nephrol 3: 187–194Google Scholar
  83. 83.
    Fürst P, Ahlberg M, Alvestrand A, Bergstrom J (1978) Principles of essential amino acid therapy in uremia. Am J Clin Nutr 31: 1744–1755PubMedGoogle Scholar
  84. 84.
    Druml W (1989) Nutritional importance of non-essential amino acids. J Clin Nutr Gastroenterol 4: 71–75Google Scholar
  85. 85.
    Druml W, Bürger U, Kleinberger G et al (1986) Elimination of amino acids in acute renal failure. Nephron 42: 62–67PubMedCrossRefGoogle Scholar
  86. 86.
    Kierdorf H, Stehle P, Behrendt W et al (1991) Influence of a new amino acid (AA) solution with increased amount of essential and branched-chain AA on protein catabolism in acute renal (ARF) and multiple organ failure (MOF). Clin Nutr 10[Suppl 21: 57–58CrossRefGoogle Scholar
  87. 87.
    Craig GM, Crane CW (1971) Lactic acidosis complicating liver failure after intravenous fructose. Brit Med J 211–216Google Scholar
  88. 88.
    Förster H, Meyer E, Ziege M (1970) Erhöhung von Serumharnsäure and Serumbilirubin nach hochdosierten Infusionen von Sorbit, Xylit and Fructose. Klin Wochenschr 48: 878–879PubMedCrossRefGoogle Scholar
  89. 89.
    Evans GW, Phillips G, Mukherjee TM et al (1973) Identification of crystals deposited in brain and kidney after xylitol administration by biochemical, and electron diffraction methods. J Clin Path 26: 32–36PubMedCrossRefGoogle Scholar
  90. 90.
    Burke JF, Wolfe RR, Mullany CJ et al (1979) Glucose requirements following burn injury. Ann Surg 190: 274–279PubMedCrossRefGoogle Scholar
  91. 91.
    Romanosky AJ, Bagby GJ, Bockman EL et al (1980) Free fatty acid utilization by skeletal muscle after endotoxin administration. Am J Physiol 239: E391 - E395PubMedGoogle Scholar
  92. 92.
    Spitzer JJ, Bagby GJ, Meszaros K, Lang CH (1988) Alteration in lipid and carbohydrate metabolism in sepsis. J Parenter Enteral Nutr 12: 553–558CrossRefGoogle Scholar
  93. 93.
    Schneeweiß B, Graninger W, Ferenci P et al (1992) Short term energy balance in patients with infections: Carbohydrate-based versus fat-based diets. Metabolism 41: 125–130PubMedCrossRefGoogle Scholar
  94. 94.
    Christman JW, McCain RW (1993) A sensible approach to the nutritional support of mechanically ventilated critically ill patients. Intensive Care Med 19: 129–136PubMedCrossRefGoogle Scholar
  95. 95.
    Sobrado J, Moldawer LL, Pomposelli JJ et al (1985) Lipids emulsions and reticuloendothelial system function in healthy and burned guinea pigs. Am J Clin Nutr 9: 559–565Google Scholar
  96. 96.
    McArdle AH, Palmason C, Mozency I, Brown RA (1981) A rationale for enteral feeding as the preferable route for hyperalimentation. Surgery 90: 616–623PubMedGoogle Scholar
  97. 97.
    Kudsk KA, Crose MA, Fabian TC et al (1991) Enteral versus parenteral feeding. Effects on septic morbidity after blunt and penetrating abdominal trauma. Ann Surg 215: 503–513CrossRefGoogle Scholar
  98. 98.
    Zaloga GP (1991) Bedside method for placing small bowel feeding tubes in critically ill patients. A prospective study. Chest 100: 1643–1646PubMedCrossRefGoogle Scholar
  99. 99.
    Deitch EA, Winterton J, Berg R (1987) The gut as a portal of entry for bacteremia. Role of protein malnutrition. Ann Surg 207: 681–692CrossRefGoogle Scholar
  100. 100.
    Mouser JK, Hak EB, Kuhl DA et al (1997) Recovery from ischemic acute renal failure is improved with enteral compared with parenteral nutrition. Crit Care Med 25: 1748–1754PubMedCrossRefGoogle Scholar
  101. 101.
    Lee HA, Sharpstone P, Ames AC (1967) Parenteral nutrition in renal failure. Postgrad Med J 43: 81–91PubMedCrossRefGoogle Scholar
  102. 102.
    Paganini EP, O’Hara P, Nakamoto S (1984) Slow continuous ultrafiltration in hemodialysis resistant oligurie acute renal failure patients. Trans Am Soc Artif Intern Organs 30: 173–178PubMedGoogle Scholar
  103. 103.
    Weisse L, Danielson BG, Wikstroem B et al (1989) Continuous arteriovenous haemofiltration in the treatment of 100 critically ill patients with acute renal failure: report on clinical outcome and nutritional aspects. Clin Nephrol 31: 184–189Google Scholar
  104. 104.
    Geronemus R, Schneider N (1984) Continuous arteriovenous haemodialysis: A new modality for treatment of acute renal failure. Trans Am Soc Artif Intern Organs 30: 610–613PubMedGoogle Scholar
  105. 105.
    Ronco C (1993) Continuous renal replacement therapies for the treatment of acute renal failure in intensive care patients. Clin Nephrol 40: 187–198PubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia 2000

Authors and Affiliations

  • H. P. Kierdorf

There are no affiliations available

Personalised recommendations