Role of Surfactant in Ventilation-Induced Lung Injury

  • S. J. C. Verbrugge
  • J. J. Haitsma
  • B. Lachmann
Conference paper


The alveolo-capillary barrier compromises three extracellular liquid compartments: 1) the vascular space, 2) the interstitial space and 3) the liquid in the lumen of the alveoli, which are separated by the capillary endothelium and the alveolar epithelium, respectively.


Mechanical Ventilation Lung Injury Endothelial Barrier Alveolar Epithelium Exogenous Surfactant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gommers D, Lachmann B (1993) Surfactant therapy: does it have a role in adults? Clinical Intensive Care 4: 284 - 295Google Scholar
  2. 2.
    Walters DV (1992) The role of pulmonary surfactant in transepithelial movement of fluid. In: Robertson B, van Golde LMG, Batenburg JJ (eds) Pulmonary surfactant: from molecular biology to clinical practice. Elsevier, Amsterdam, 193 - 213Google Scholar
  3. 3.
    West JB, Mathieu-Costello 0 (1992) Stress failure of pulmonary capillaries: role in lung and heart disease. Lancet 340: 762 - 767Google Scholar
  4. 4.
    Nash G, Bowen JA, Langlinais PC (1971) "Respirator lung": a misnomer. Arch Pathol 21: 234 - 240Google Scholar
  5. 5.
    Bachofen M, Weibel ER (1982) Structural alternations of lung parenchyma in the adult respiratory distress syndrome. In: RC Bone (ed) Clinics in chest medicine. Saunders WB, Philadelphia, 35 - 56Google Scholar
  6. 6.
    Dreyfuss D, Saumon G (1998) Ventilator-induced lung injury. Lessons from experimental studies. Am J Resp Crit Care Med 157: 294-323Google Scholar
  7. 7.
    Doyle IR, Nicholas TE, Bersten AD (1995) Serum surfactant protein-A levels in patients with acute cardiogenic pulmonary edema and adult respiratory distress syndrome. Am J Resp Crit Care Med 152: 307 - 317PubMedGoogle Scholar
  8. 8.
    Robertson B, Curstedt T, Herting E et al (1995) Alveolo-to-vascular leakage of surfactant protein A in ventilated immature newborn rabbits. Biol Neonate 68: 185 - 190PubMedCrossRefGoogle Scholar
  9. 9.
    Lachmann B, Eijking EP, So KL, Gommers D (1994) In vivo evaluation of the inhibitory capacity of human plasma on exogenous surfactant function. Intens Care Med 20: 6 - 11CrossRefGoogle Scholar
  10. 10.
    Mead J, Collier C (1959) Relationship of volume history of lungs to respiratory mechanics in anesthetised dogs. J Appl Physiol 14: 669 - 678Google Scholar
  11. 11.
    Greenfield LJ, Ebert PA, Benson DW (1964) Effect of positive pressure ventilation on surface tension properties of lung extracts. Anesthesiology 25: 312 - 316PubMedCrossRefGoogle Scholar
  12. 12.
    Faridy EE, Permutt S, Riley RL (1966) Effect of ventilation on surface forces in excised dogs' lungs. J Appl Physiol 21: 1453 - 1462PubMedGoogle Scholar
  13. 13.
    Wyszogrodski I, Kyei-Aboagye K, Taeusch Jr W, Avery ME (1975) Surfactant inactivation by hyperinflation: conservation by end-expiratory pressure. J Appl Physiol 38: 461 - 466PubMedGoogle Scholar
  14. 14.
    Faridy EE (1976). Effect of ventilation on movement of surfactant in airways. Resp Physiol 27: 323 - 334CrossRefGoogle Scholar
  15. 15.
    Veldhuizen RAW, Marcou J, Yao LJ et al (1996) Alveolar surfactant aggregate conversion in ventilated normal and injured rabbits. Am J Physiol 270: 152 - 158Google Scholar
  16. 16.
    Verbrugge SJC, Böhm SH, Gommers D et al (1998) Surfactant impairment after mechanical ventilation with large alveolar surface area changes and effects of positive end-expiratory pressure. Br J Anaesth 80: 1 - 5CrossRefGoogle Scholar
  17. 17.
    Magoon MW, Wright JR, Baritussio A et al (1983) Subfractions of lung surfactant. Implications for metabolism and surface activity. Biochim Biophys Acta 750: 18-31Google Scholar
  18. 18.
    Albert RK, Lakshminarayan S, Hildebrandt J et al (1979) Increased surface tension favors pulmonary edema formation in anaesthetized dogs' lungs. J Clin Invest 63: 1015 - 1018PubMedCrossRefGoogle Scholar
  19. 19.
    Bos JAH, Wollmer P, Bakker W et al (1992) Clearance of 99n,Tc-DTPA and experimentally increased alveolar surfactant content. J Appl Physiol 72: 1413 - 1417PubMedGoogle Scholar
  20. 20.
    Verbrugge SJC, Gommers D, Bos JAH et al (1996) Pulmonary 99n,Tc-human serum albumin clearance and effects of surfactant replacement after lung lavage in rabbits. Crit Care Med 24: 1518 - 1523PubMedCrossRefGoogle Scholar
  21. 21.
    Coker PJ, Hernandez LA, Peevy KJ et al (1992) Increased sensitivity to mechanical ventilation after surfactant inactivation in young rabbit lungs. Crit Care Med 20: 635 - 640PubMedCrossRefGoogle Scholar
  22. 22.
    Mead J, Takishima T, Leith D (1970) Stress distribution in lungs: a model of pulmonary elasticity. J Appl Physiol 28: 596 - 608PubMedGoogle Scholar
  23. 23.
    Muscerede JG, Mullen JBM, Gan K, Slutsky AS (1994) Tidal ventilation at low airway pressures can augment lung injury. Am J Resp Crit Care Med 149: 1327 - 1334Google Scholar
  24. 24.
    Taskar V, John E, Evander P et al (1997) Surfactant dysfunction makes lungs vulnerable to repetitive collapse and reexpansion. Am J Resp Crit Care Med 155: 313 - 320PubMedGoogle Scholar
  25. 25.
    Dreyfuss D, Saumon G (1993) Role of tidal volume, FRC and end-inspiratory volume in the development of pulmonary edema following mechanical ventilation. Am Rev Resp Dis 148: 1194-1203Google Scholar
  26. 26.
    Tyler DC (1983) Positive end-expiratory pressure: a review. Crit Care Med 11: 300 - 308PubMedCrossRefGoogle Scholar
  27. 27.
    Ito Y, Veldhuizen RAW, Yao LJ et al (1997) Ventilation strategies affect surfactant aggregate conversion in acute lung injury. Am J Resp Crit Care Med 155: 493 - 499PubMedGoogle Scholar
  28. 28.
    Verbrugge SJC, Sorm V, Gommers D, Lachmann B (1998) Exogenous surfactant preserves lung function and reduces alveolar Evans Blue dye influx in a rat model of ventilation-induced lung injury. Anesthesiology 89: 467 - 474PubMedCrossRefGoogle Scholar
  29. 29.
    Lachmann B, Danzmann E, Haendly B, Jonson B (1982) Ventilator settings and gas exchange in respiratory distress syndrome. In: Prakash O (ed) Applied physiology in clinical respiratory care. Martinus Nijhoff publishers, The Hague, 141 - 176Google Scholar

Copyright information

© Springer-Verlag Italia 2000

Authors and Affiliations

  • S. J. C. Verbrugge
  • J. J. Haitsma
  • B. Lachmann

There are no affiliations available

Personalised recommendations